Mercurial > hg > orthanc
view Plugins/Samples/GdcmDecoder/GdcmImageDecoder.cpp @ 2257:b8e07269da72
revert commit #69b0f4e, as quoting is only OPTIONAL, so we preserve backward compatibility
author | Sebastien Jodogne <s.jodogne@gmail.com> |
---|---|
date | Thu, 02 Feb 2017 15:08:33 +0100 |
parents | a3a65de1840f |
children | 7ef9207f31d4 |
line wrap: on
line source
/** * Orthanc - A Lightweight, RESTful DICOM Store * Copyright (C) 2012-2016 Sebastien Jodogne, Medical Physics * Department, University Hospital of Liege, Belgium * Copyright (C) 2017 Osimis, Belgium * * This program is free software: you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. **/ #include "GdcmImageDecoder.h" #include "OrthancImageWrapper.h" #include <gdcmImageReader.h> #include <gdcmImageApplyLookupTable.h> #include <gdcmImageChangePlanarConfiguration.h> #include <gdcmImageChangePhotometricInterpretation.h> #include <stdexcept> #include <boost/iostreams/stream.hpp> #include <boost/iostreams/device/array.hpp> namespace OrthancPlugins { struct GdcmImageDecoder::PImpl { const void* dicom_; size_t size_; gdcm::ImageReader reader_; std::auto_ptr<gdcm::ImageApplyLookupTable> lut_; std::auto_ptr<gdcm::ImageChangePhotometricInterpretation> photometric_; std::auto_ptr<gdcm::ImageChangePlanarConfiguration> interleaved_; std::string decoded_; PImpl(const void* dicom, size_t size) : dicom_(dicom), size_(size) { } const gdcm::DataSet& GetDataSet() const { return reader_.GetFile().GetDataSet(); } const gdcm::Image& GetImage() const { if (interleaved_.get() != NULL) { return interleaved_->GetOutput(); } if (lut_.get() != NULL) { return lut_->GetOutput(); } if (photometric_.get() != NULL) { return photometric_->GetOutput(); } return reader_.GetImage(); } void Decode() { // Change photometric interpretation or apply LUT, if required { const gdcm::Image& image = GetImage(); if (image.GetPixelFormat().GetSamplesPerPixel() == 1 && image.GetPhotometricInterpretation() == gdcm::PhotometricInterpretation::PALETTE_COLOR) { lut_.reset(new gdcm::ImageApplyLookupTable()); lut_->SetInput(image); if (!lut_->Apply()) { throw std::runtime_error( "GDCM cannot apply the lookup table"); } } else if (image.GetPixelFormat().GetSamplesPerPixel() == 1) { if (image.GetPhotometricInterpretation() != gdcm::PhotometricInterpretation::MONOCHROME1 && image.GetPhotometricInterpretation() != gdcm::PhotometricInterpretation::MONOCHROME2) { photometric_.reset(new gdcm::ImageChangePhotometricInterpretation()); photometric_->SetInput(image); photometric_->SetPhotometricInterpretation(gdcm::PhotometricInterpretation::MONOCHROME2); if (!photometric_->Change() || GetImage().GetPhotometricInterpretation() != gdcm::PhotometricInterpretation::MONOCHROME2) { throw std::runtime_error("GDCM cannot change the photometric interpretation"); } } } else { if (image.GetPixelFormat().GetSamplesPerPixel() == 3 && image.GetPhotometricInterpretation() != gdcm::PhotometricInterpretation::RGB && (image.GetTransferSyntax() != gdcm::TransferSyntax::JPEG2000Lossless || image.GetPhotometricInterpretation() != gdcm::PhotometricInterpretation::YBR_RCT)) { photometric_.reset(new gdcm::ImageChangePhotometricInterpretation()); photometric_->SetInput(image); photometric_->SetPhotometricInterpretation(gdcm::PhotometricInterpretation::RGB); if (!photometric_->Change() || GetImage().GetPhotometricInterpretation() != gdcm::PhotometricInterpretation::RGB) { throw std::runtime_error("GDCM cannot change the photometric interpretation"); } } } } // Possibly convert planar configuration to interleaved { const gdcm::Image& image = GetImage(); if (image.GetPlanarConfiguration() != 0 && image.GetPixelFormat().GetSamplesPerPixel() != 1) { interleaved_.reset(new gdcm::ImageChangePlanarConfiguration()); interleaved_->SetInput(image); if (!interleaved_->Change() || GetImage().GetPlanarConfiguration() != 0) { throw std::runtime_error("GDCM cannot change the planar configuration to interleaved"); } } } } }; GdcmImageDecoder::GdcmImageDecoder(const void* dicom, size_t size) : pimpl_(new PImpl(dicom, size)) { // Setup a stream to the memory buffer using namespace boost::iostreams; basic_array_source<char> source(reinterpret_cast<const char*>(dicom), size); stream<basic_array_source<char> > stream(source); // Parse the DICOM instance using GDCM pimpl_->reader_.SetStream(stream); if (!pimpl_->reader_.Read()) { throw std::runtime_error("Bad file format"); } pimpl_->Decode(); } OrthancPluginPixelFormat GdcmImageDecoder::GetFormat() const { const gdcm::Image& image = pimpl_->GetImage(); if (image.GetPixelFormat().GetSamplesPerPixel() == 1 && (image.GetPhotometricInterpretation() == gdcm::PhotometricInterpretation::MONOCHROME1 || image.GetPhotometricInterpretation() == gdcm::PhotometricInterpretation::MONOCHROME2)) { switch (image.GetPixelFormat()) { case gdcm::PixelFormat::UINT16: return OrthancPluginPixelFormat_Grayscale16; case gdcm::PixelFormat::INT16: return OrthancPluginPixelFormat_SignedGrayscale16; case gdcm::PixelFormat::UINT8: return OrthancPluginPixelFormat_Grayscale8; default: throw std::runtime_error("Unsupported pixel format"); } } else if (image.GetPixelFormat().GetSamplesPerPixel() == 3 && (image.GetPhotometricInterpretation() == gdcm::PhotometricInterpretation::RGB || image.GetPhotometricInterpretation() == gdcm::PhotometricInterpretation::YBR_RCT)) { switch (image.GetPixelFormat()) { case gdcm::PixelFormat::UINT8: return OrthancPluginPixelFormat_RGB24; default: break; } } throw std::runtime_error("Unsupported pixel format"); } unsigned int GdcmImageDecoder::GetWidth() const { return pimpl_->GetImage().GetColumns(); } unsigned int GdcmImageDecoder::GetHeight() const { return pimpl_->GetImage().GetRows(); } unsigned int GdcmImageDecoder::GetFramesCount() const { return pimpl_->GetImage().GetDimension(2); } size_t GdcmImageDecoder::GetBytesPerPixel(OrthancPluginPixelFormat format) { switch (format) { case OrthancPluginPixelFormat_Grayscale8: return 1; case OrthancPluginPixelFormat_Grayscale16: case OrthancPluginPixelFormat_SignedGrayscale16: return 2; case OrthancPluginPixelFormat_RGB24: return 3; default: throw std::runtime_error("Unsupport pixel format"); } } OrthancPluginImage* GdcmImageDecoder::Decode(OrthancPluginContext* context, unsigned int frameIndex) const { unsigned int frames = GetFramesCount(); unsigned int width = GetWidth(); unsigned int height = GetHeight(); OrthancPluginPixelFormat format = GetFormat(); size_t bpp = GetBytesPerPixel(format); if (frameIndex >= frames) { throw std::runtime_error("Inexistent frame index"); } std::string& decoded = pimpl_->decoded_; OrthancImageWrapper target(context, format, width, height); if (width == 0 || height == 0) { return target.Release(); } if (decoded.empty()) { decoded.resize(pimpl_->GetImage().GetBufferLength()); pimpl_->GetImage().GetBuffer(&decoded[0]); } const void* sourceBuffer = &decoded[0]; if (target.GetPitch() == bpp * width && frames == 1) { assert(decoded.size() == target.GetPitch() * target.GetHeight()); memcpy(target.GetBuffer(), sourceBuffer, decoded.size()); } else { size_t targetPitch = target.GetPitch(); size_t sourcePitch = width * bpp; const char* a = &decoded[sourcePitch * height * frameIndex]; char* b = target.GetBuffer(); for (uint32_t y = 0; y < height; y++) { memcpy(b, a, sourcePitch); a += sourcePitch; b += targetPitch; } } return target.Release(); } }