Mercurial > hg > orthanc
view OrthancFramework/Sources/Images/ImageProcessing.cpp @ 4934:94a7b681b340 more-tags
added configuration for extra main dicom tags + save signature in metadata + show warning if inconsistent main dicom tags
author | Alain Mazy <am@osimis.io> |
---|---|
date | Thu, 10 Mar 2022 09:03:24 +0100 |
parents | d8c8274d4e41 |
children | dfbe764995cf |
line wrap: on
line source
/** * Orthanc - A Lightweight, RESTful DICOM Store * Copyright (C) 2012-2016 Sebastien Jodogne, Medical Physics * Department, University Hospital of Liege, Belgium * Copyright (C) 2017-2022 Osimis S.A., Belgium * Copyright (C) 2021-2022 Sebastien Jodogne, ICTEAM UCLouvain, Belgium * * This program is free software: you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * as published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program. If not, see * <http://www.gnu.org/licenses/>. **/ #include "../PrecompiledHeaders.h" #include "ImageProcessing.h" #include "Image.h" #include "ImageTraits.h" #include "PixelTraits.h" #include "../OrthancException.h" #ifdef __EMSCRIPTEN__ /* Avoid this error: ----------------- .../boost/math/special_functions/round.hpp:118:12: warning: implicit conversion from 'std::__2::numeric_limits<long long>::type' (aka 'long long') to 'float' changes value from 9223372036854775807 to 9223372036854775808 [-Wimplicit-int-float-conversion] .../mnt/c/osi/dev/orthanc/Core/Images/ImageProcessing.cpp:333:28: note: in instantiation of function template specialization 'boost::math::llround<float>' requested here .../mnt/c/osi/dev/orthanc/Core/Images/ImageProcessing.cpp:1006:9: note: in instantiation of function template specialization 'Orthanc::MultiplyConstantInternal<unsigned char, true>' requested here */ #pragma GCC diagnostic ignored "-Wimplicit-int-float-conversion" #endif #include <boost/math/special_functions/round.hpp> #include <algorithm> #include <cassert> #include <limits> #include <list> #include <map> #include <stdint.h> #include <string.h> namespace Orthanc { ImageProcessing::ImagePoint::ImagePoint(int32_t x, int32_t y) : x_(x), y_(y) { } int32_t ImageProcessing::ImagePoint::GetX() const { return x_; } int32_t ImageProcessing::ImagePoint::GetY() const { return y_; } void ImageProcessing::ImagePoint::Set(int32_t x, int32_t y) { x_ = x; y_ = y; } void ImageProcessing::ImagePoint::ClipTo(int32_t minX, int32_t maxX, int32_t minY, int32_t maxY) { x_ = std::max(minX, std::min(maxX, x_)); y_ = std::max(minY, std::min(maxY, y_)); } double ImageProcessing::ImagePoint::GetDistanceTo(const ImagePoint& other) const { double dx = (double)(other.GetX() - GetX()); double dy = (double)(other.GetY() - GetY()); return sqrt(dx * dx + dy * dy); } double ImageProcessing::ImagePoint::GetDistanceToLine(double a, double b, double c) const // where ax + by + c = 0 is the equation of the line { return std::abs(a * static_cast<double>(GetX()) + b * static_cast<double>(GetY()) + c) / pow(a * a + b * b, 0.5); } template <typename TargetType, typename SourceType> static void ConvertInternal(ImageAccessor& target, const ImageAccessor& source) { // WARNING - "::min()" should be replaced by "::lowest()" if // dealing with float or double (which is not the case so far) assert(sizeof(TargetType) <= 2); // Safeguard to remember about "float/double" const TargetType minValue = std::numeric_limits<TargetType>::min(); const TargetType maxValue = std::numeric_limits<TargetType>::max(); const unsigned int width = source.GetWidth(); const unsigned int height = source.GetHeight(); for (unsigned int y = 0; y < height; y++) { TargetType* t = reinterpret_cast<TargetType*>(target.GetRow(y)); const SourceType* s = reinterpret_cast<const SourceType*>(source.GetConstRow(y)); for (unsigned int x = 0; x < width; x++, t++, s++) { if (static_cast<int32_t>(*s) < static_cast<int32_t>(minValue)) { *t = minValue; } else if (static_cast<int32_t>(*s) > static_cast<int32_t>(maxValue)) { *t = maxValue; } else { *t = static_cast<TargetType>(*s); } } } } template <typename SourceType> static void ConvertGrayscaleToFloat(ImageAccessor& target, const ImageAccessor& source) { assert(sizeof(float) == 4); const unsigned int width = source.GetWidth(); const unsigned int height = source.GetHeight(); for (unsigned int y = 0; y < height; y++) { float* t = reinterpret_cast<float*>(target.GetRow(y)); const SourceType* s = reinterpret_cast<const SourceType*>(source.GetConstRow(y)); for (unsigned int x = 0; x < width; x++, t++, s++) { *t = static_cast<float>(*s); } } } template <PixelFormat TargetFormat> static void ConvertFloatToGrayscale(ImageAccessor& target, const ImageAccessor& source) { typedef typename PixelTraits<TargetFormat>::PixelType TargetType; assert(sizeof(float) == 4); const unsigned int width = source.GetWidth(); const unsigned int height = source.GetHeight(); for (unsigned int y = 0; y < height; y++) { TargetType* q = reinterpret_cast<TargetType*>(target.GetRow(y)); const float* p = reinterpret_cast<const float*>(source.GetConstRow(y)); for (unsigned int x = 0; x < width; x++, p++, q++) { PixelTraits<TargetFormat>::FloatToPixel(*q, *p); } } } template <typename TargetType> static void ConvertColorToGrayscale(ImageAccessor& target, const ImageAccessor& source) { assert(source.GetFormat() == PixelFormat_RGB24); // WARNING - "::min()" should be replaced by "::lowest()" if // dealing with float or double (which is not the case so far) assert(sizeof(TargetType) <= 2); // Safeguard to remember about "float/double" const TargetType minValue = std::numeric_limits<TargetType>::min(); const TargetType maxValue = std::numeric_limits<TargetType>::max(); const unsigned int width = source.GetWidth(); const unsigned int height = source.GetHeight(); for (unsigned int y = 0; y < height; y++) { TargetType* t = reinterpret_cast<TargetType*>(target.GetRow(y)); const uint8_t* s = reinterpret_cast<const uint8_t*>(source.GetConstRow(y)); for (unsigned int x = 0; x < width; x++, t++, s += 3) { // Y = 0.2126 R + 0.7152 G + 0.0722 B int32_t v = (2126 * static_cast<int32_t>(s[0]) + 7152 * static_cast<int32_t>(s[1]) + 0722 * static_cast<int32_t>(s[2])) / 10000; if (static_cast<int32_t>(v) < static_cast<int32_t>(minValue)) { *t = minValue; } else if (static_cast<int32_t>(v) > static_cast<int32_t>(maxValue)) { *t = maxValue; } else { *t = static_cast<TargetType>(v); } } } } static void MemsetZeroInternal(ImageAccessor& image) { const unsigned int height = image.GetHeight(); const size_t lineSize = image.GetBytesPerPixel() * image.GetWidth(); const size_t pitch = image.GetPitch(); uint8_t *p = reinterpret_cast<uint8_t*>(image.GetBuffer()); for (unsigned int y = 0; y < height; y++) { memset(p, 0, lineSize); p += pitch; } } template <typename PixelType> static void SetInternal(ImageAccessor& image, int64_t constant) { if (constant == 0 && (image.GetFormat() == PixelFormat_Grayscale8 || image.GetFormat() == PixelFormat_Grayscale16 || image.GetFormat() == PixelFormat_Grayscale32 || image.GetFormat() == PixelFormat_Grayscale64 || image.GetFormat() == PixelFormat_SignedGrayscale16)) { MemsetZeroInternal(image); } else { const unsigned int width = image.GetWidth(); const unsigned int height = image.GetHeight(); for (unsigned int y = 0; y < height; y++) { PixelType* p = reinterpret_cast<PixelType*>(image.GetRow(y)); for (unsigned int x = 0; x < width; x++, p++) { *p = static_cast<PixelType>(constant); } } } } template <typename PixelType> static void GetMinMaxValueInternal(PixelType& minValue, PixelType& maxValue, const ImageAccessor& source, const PixelType LowestValue = std::numeric_limits<PixelType>::min()) { // Deal with the special case of empty image if (source.GetWidth() == 0 || source.GetHeight() == 0) { minValue = 0; maxValue = 0; return; } minValue = std::numeric_limits<PixelType>::max(); maxValue = LowestValue; const unsigned int height = source.GetHeight(); const unsigned int width = source.GetWidth(); for (unsigned int y = 0; y < height; y++) { const PixelType* p = reinterpret_cast<const PixelType*>(source.GetConstRow(y)); for (unsigned int x = 0; x < width; x++, p++) { if (*p < minValue) { minValue = *p; } if (*p > maxValue) { maxValue = *p; } } } } template <typename PixelType> static void AddConstantInternal(ImageAccessor& image, int64_t constant) { if (constant == 0) { return; } // WARNING - "::min()" should be replaced by "::lowest()" if // dealing with float or double (which is not the case so far) assert(sizeof(PixelType) <= 2); // Safeguard to remember about "float/double" const int64_t minValue = std::numeric_limits<PixelType>::min(); const int64_t maxValue = std::numeric_limits<PixelType>::max(); const unsigned int width = image.GetWidth(); const unsigned int height = image.GetHeight(); for (unsigned int y = 0; y < height; y++) { PixelType* p = reinterpret_cast<PixelType*>(image.GetRow(y)); for (unsigned int x = 0; x < width; x++, p++) { int64_t v = static_cast<int64_t>(*p) + constant; if (v > maxValue) { *p = std::numeric_limits<PixelType>::max(); } else if (v < minValue) { *p = std::numeric_limits<PixelType>::min(); } else { *p = static_cast<PixelType>(v); } } } } template <typename PixelType, bool UseRound> static void MultiplyConstantInternal(ImageAccessor& image, float factor) { if (std::abs(factor - 1.0f) <= std::numeric_limits<float>::epsilon()) { return; } // WARNING - "::min()" should be replaced by "::lowest()" if // dealing with float or double (which is not the case so far) assert(sizeof(PixelType) <= 2); // Safeguard to remember about "float/double" const int64_t minValue = std::numeric_limits<PixelType>::min(); const int64_t maxValue = std::numeric_limits<PixelType>::max(); const unsigned int width = image.GetWidth(); const unsigned int height = image.GetHeight(); for (unsigned int y = 0; y < height; y++) { PixelType* p = reinterpret_cast<PixelType*>(image.GetRow(y)); for (unsigned int x = 0; x < width; x++, p++) { int64_t v; if (UseRound) { assert(sizeof(long long) == sizeof(int64_t)); // The "round" operation is very costly v = boost::math::llround(static_cast<float>(*p) * factor); } else { v = static_cast<int64_t>(static_cast<float>(*p) * factor); } if (v > maxValue) { *p = std::numeric_limits<PixelType>::max(); } else if (v < minValue) { *p = std::numeric_limits<PixelType>::min(); } else { *p = static_cast<PixelType>(v); } } } } // Computes "a * x + b" at each pixel => Note that this is not the // same convention as in "ShiftScale()", but it is the convention of // "ShiftScale2()" template <typename TargetType, typename SourceType, bool UseRound, bool Invert> static void ShiftScaleInternal(ImageAccessor& target, const ImageAccessor& source, float a, float b, const TargetType LowestValue) // This function can be applied inplace (source == target) { if (source.GetWidth() != target.GetWidth() || source.GetHeight() != target.GetHeight()) { throw OrthancException(ErrorCode_IncompatibleImageSize); } if (&source == &target && source.GetFormat() != target.GetFormat()) { throw OrthancException(ErrorCode_IncompatibleImageFormat); } const TargetType minPixelValue = LowestValue; const TargetType maxPixelValue = std::numeric_limits<TargetType>::max(); const float minFloatValue = static_cast<float>(LowestValue); const float maxFloatValue = static_cast<float>(maxPixelValue); const unsigned int height = target.GetHeight(); const unsigned int width = target.GetWidth(); for (unsigned int y = 0; y < height; y++) { TargetType* p = reinterpret_cast<TargetType*>(target.GetRow(y)); const SourceType* q = reinterpret_cast<const SourceType*>(source.GetConstRow(y)); for (unsigned int x = 0; x < width; x++, p++, q++) { float v = a * static_cast<float>(*q) + b; if (v >= maxFloatValue) { *p = maxPixelValue; } else if (v <= minFloatValue) { *p = minPixelValue; } else if (UseRound) { // The "round" operation is very costly assert(sizeof(TargetType) < sizeof(int)); *p = static_cast<TargetType>(boost::math::iround(v)); } else { *p = static_cast<TargetType>(std::floor(v)); } if (Invert) { *p = maxPixelValue - *p; } } } } template <typename PixelType> static void ShiftRightInternal(ImageAccessor& image, unsigned int shift) { const unsigned int height = image.GetHeight(); const unsigned int width = image.GetWidth(); for (unsigned int y = 0; y < height; y++) { PixelType* p = reinterpret_cast<PixelType*>(image.GetRow(y)); for (unsigned int x = 0; x < width; x++, p++) { *p = *p >> shift; } } } template <typename PixelType> static void ShiftLeftInternal(ImageAccessor& image, unsigned int shift) { const unsigned int height = image.GetHeight(); const unsigned int width = image.GetWidth(); for (unsigned int y = 0; y < height; y++) { PixelType* p = reinterpret_cast<PixelType*>(image.GetRow(y)); for (unsigned int x = 0; x < width; x++, p++) { *p = *p << shift; } } } void ImageProcessing::Copy(ImageAccessor& target, const ImageAccessor& source) { if (target.GetWidth() != source.GetWidth() || target.GetHeight() != source.GetHeight()) { throw OrthancException(ErrorCode_IncompatibleImageSize); } if (target.GetFormat() != source.GetFormat()) { throw OrthancException(ErrorCode_IncompatibleImageFormat); } const unsigned int lineSize = source.GetBytesPerPixel() * source.GetWidth(); assert(source.GetPitch() >= lineSize && target.GetPitch() >= lineSize); const unsigned int height = source.GetHeight(); for (unsigned int y = 0; y < height; y++) { memcpy(target.GetRow(y), source.GetConstRow(y), lineSize); } } template <typename TargetType, typename SourceType> static void ApplyWindowingInternal(ImageAccessor& target, const ImageAccessor& source, float windowCenter, float windowWidth, float rescaleSlope, float rescaleIntercept, bool invert) { assert(sizeof(SourceType) == source.GetBytesPerPixel() && sizeof(TargetType) == target.GetBytesPerPixel()); // WARNING - "::min()" should be replaced by "::lowest()" if // dealing with float or double (which is not the case so far) assert(sizeof(TargetType) <= 2); // Safeguard to remember about "float/double" const TargetType minTargetValue = std::numeric_limits<TargetType>::min(); const TargetType maxTargetValue = std::numeric_limits<TargetType>::max(); const float maxFloatValue = static_cast<float>(maxTargetValue); const float windowIntercept = windowCenter - windowWidth / 2.0f; const float windowSlope = (maxFloatValue + 1.0f) / windowWidth; const float a = rescaleSlope * windowSlope; const float b = (rescaleIntercept - windowIntercept) * windowSlope; if (invert) { ShiftScaleInternal<TargetType, SourceType, false, true>(target, source, a, b, minTargetValue); } else { ShiftScaleInternal<TargetType, SourceType, false, false>(target, source, a, b, minTargetValue); } } void ImageProcessing::ApplyWindowing_Deprecated(ImageAccessor& target, const ImageAccessor& source, float windowCenter, float windowWidth, float rescaleSlope, float rescaleIntercept, bool invert) { if (target.GetWidth() != source.GetWidth() || target.GetHeight() != source.GetHeight()) { throw OrthancException(ErrorCode_IncompatibleImageSize); } switch (source.GetFormat()) { case PixelFormat_Float32: { switch (target.GetFormat()) { case PixelFormat_Grayscale8: ApplyWindowingInternal<uint8_t, float>(target, source, windowCenter, windowWidth, rescaleSlope, rescaleIntercept, invert); break; case PixelFormat_Grayscale16: ApplyWindowingInternal<uint16_t, float>(target, source, windowCenter, windowWidth, rescaleSlope, rescaleIntercept, invert); break; default: throw OrthancException(ErrorCode_NotImplemented); } };break; case PixelFormat_Grayscale8: { switch (target.GetFormat()) { case PixelFormat_Grayscale8: ApplyWindowingInternal<uint8_t, uint8_t>(target, source, windowCenter, windowWidth, rescaleSlope, rescaleIntercept, invert); break; case PixelFormat_Grayscale16: ApplyWindowingInternal<uint16_t, uint8_t>(target, source, windowCenter, windowWidth, rescaleSlope, rescaleIntercept, invert); break; default: throw OrthancException(ErrorCode_NotImplemented); } };break; case PixelFormat_Grayscale16: { switch (target.GetFormat()) { case PixelFormat_Grayscale8: ApplyWindowingInternal<uint8_t, uint16_t>(target, source, windowCenter, windowWidth, rescaleSlope, rescaleIntercept, invert); break; case PixelFormat_Grayscale16: ApplyWindowingInternal<uint16_t, uint16_t>(target, source, windowCenter, windowWidth, rescaleSlope, rescaleIntercept, invert); break; default: throw OrthancException(ErrorCode_NotImplemented); } };break; default: throw OrthancException(ErrorCode_NotImplemented); } } void ImageProcessing::Convert(ImageAccessor& target, const ImageAccessor& source) { if (target.GetWidth() != source.GetWidth() || target.GetHeight() != source.GetHeight()) { throw OrthancException(ErrorCode_IncompatibleImageSize); } const unsigned int width = source.GetWidth(); const unsigned int height = source.GetHeight(); if (source.GetFormat() == target.GetFormat()) { Copy(target, source); return; } if (target.GetFormat() == PixelFormat_Grayscale16 && source.GetFormat() == PixelFormat_Grayscale8) { ConvertInternal<uint16_t, uint8_t>(target, source); return; } if (target.GetFormat() == PixelFormat_SignedGrayscale16 && source.GetFormat() == PixelFormat_Grayscale8) { ConvertInternal<int16_t, uint8_t>(target, source); return; } if (target.GetFormat() == PixelFormat_Grayscale8 && source.GetFormat() == PixelFormat_Grayscale16) { ConvertInternal<uint8_t, uint16_t>(target, source); return; } if (target.GetFormat() == PixelFormat_SignedGrayscale16 && source.GetFormat() == PixelFormat_Grayscale16) { ConvertInternal<int16_t, uint16_t>(target, source); return; } if (target.GetFormat() == PixelFormat_Grayscale8 && source.GetFormat() == PixelFormat_SignedGrayscale16) { ConvertInternal<uint8_t, int16_t>(target, source); return; } if (target.GetFormat() == PixelFormat_Grayscale16 && source.GetFormat() == PixelFormat_SignedGrayscale16) { ConvertInternal<uint16_t, int16_t>(target, source); return; } if (target.GetFormat() == PixelFormat_Grayscale8 && source.GetFormat() == PixelFormat_RGB24) { ConvertColorToGrayscale<uint8_t>(target, source); return; } if (target.GetFormat() == PixelFormat_Grayscale16 && source.GetFormat() == PixelFormat_RGB24) { ConvertColorToGrayscale<uint16_t>(target, source); return; } if (target.GetFormat() == PixelFormat_SignedGrayscale16 && source.GetFormat() == PixelFormat_RGB24) { ConvertColorToGrayscale<int16_t>(target, source); return; } if (target.GetFormat() == PixelFormat_Float32 && source.GetFormat() == PixelFormat_Grayscale8) { ConvertGrayscaleToFloat<uint8_t>(target, source); return; } if (target.GetFormat() == PixelFormat_Float32 && source.GetFormat() == PixelFormat_Grayscale16) { ConvertGrayscaleToFloat<uint16_t>(target, source); return; } if (target.GetFormat() == PixelFormat_Float32 && source.GetFormat() == PixelFormat_Grayscale32) { ConvertGrayscaleToFloat<uint32_t>(target, source); return; } if (target.GetFormat() == PixelFormat_Float32 && source.GetFormat() == PixelFormat_SignedGrayscale16) { ConvertGrayscaleToFloat<int16_t>(target, source); return; } if (target.GetFormat() == PixelFormat_Grayscale8 && source.GetFormat() == PixelFormat_RGBA32) { for (unsigned int y = 0; y < height; y++) { const uint8_t* p = reinterpret_cast<const uint8_t*>(source.GetConstRow(y)); uint8_t* q = reinterpret_cast<uint8_t*>(target.GetRow(y)); for (unsigned int x = 0; x < width; x++, q++) { *q = static_cast<uint8_t>((2126 * static_cast<uint32_t>(p[0]) + 7152 * static_cast<uint32_t>(p[1]) + 0722 * static_cast<uint32_t>(p[2])) / 10000); p += 4; } } return; } if (target.GetFormat() == PixelFormat_Grayscale8 && source.GetFormat() == PixelFormat_BGRA32) { for (unsigned int y = 0; y < height; y++) { const uint8_t* p = reinterpret_cast<const uint8_t*>(source.GetConstRow(y)); uint8_t* q = reinterpret_cast<uint8_t*>(target.GetRow(y)); for (unsigned int x = 0; x < width; x++, q++) { *q = static_cast<uint8_t>((2126 * static_cast<uint32_t>(p[2]) + 7152 * static_cast<uint32_t>(p[1]) + 0722 * static_cast<uint32_t>(p[0])) / 10000); p += 4; } } return; } if (target.GetFormat() == PixelFormat_RGB24 && source.GetFormat() == PixelFormat_RGBA32) { for (unsigned int y = 0; y < height; y++) { const uint8_t* p = reinterpret_cast<const uint8_t*>(source.GetConstRow(y)); uint8_t* q = reinterpret_cast<uint8_t*>(target.GetRow(y)); for (unsigned int x = 0; x < width; x++) { q[0] = p[0]; q[1] = p[1]; q[2] = p[2]; p += 4; q += 3; } } return; } if (target.GetFormat() == PixelFormat_RGB24 && source.GetFormat() == PixelFormat_BGRA32) { for (unsigned int y = 0; y < height; y++) { const uint8_t* p = reinterpret_cast<const uint8_t*>(source.GetConstRow(y)); uint8_t* q = reinterpret_cast<uint8_t*>(target.GetRow(y)); for (unsigned int x = 0; x < width; x++) { q[0] = p[2]; q[1] = p[1]; q[2] = p[0]; p += 4; q += 3; } } return; } if (target.GetFormat() == PixelFormat_RGBA32 && source.GetFormat() == PixelFormat_RGB24) { for (unsigned int y = 0; y < height; y++) { const uint8_t* p = reinterpret_cast<const uint8_t*>(source.GetConstRow(y)); uint8_t* q = reinterpret_cast<uint8_t*>(target.GetRow(y)); for (unsigned int x = 0; x < width; x++) { q[0] = p[0]; q[1] = p[1]; q[2] = p[2]; q[3] = 255; // Set the alpha channel to full opacity p += 3; q += 4; } } return; } if (target.GetFormat() == PixelFormat_RGB24 && source.GetFormat() == PixelFormat_Grayscale8) { for (unsigned int y = 0; y < height; y++) { const uint8_t* p = reinterpret_cast<const uint8_t*>(source.GetConstRow(y)); uint8_t* q = reinterpret_cast<uint8_t*>(target.GetRow(y)); for (unsigned int x = 0; x < width; x++) { q[0] = *p; q[1] = *p; q[2] = *p; p += 1; q += 3; } } return; } if ((target.GetFormat() == PixelFormat_RGBA32 || target.GetFormat() == PixelFormat_BGRA32) && source.GetFormat() == PixelFormat_Grayscale8) { for (unsigned int y = 0; y < height; y++) { const uint8_t* p = reinterpret_cast<const uint8_t*>(source.GetConstRow(y)); uint8_t* q = reinterpret_cast<uint8_t*>(target.GetRow(y)); for (unsigned int x = 0; x < width; x++) { q[0] = *p; q[1] = *p; q[2] = *p; q[3] = 255; p += 1; q += 4; } } return; } if (target.GetFormat() == PixelFormat_BGRA32 && source.GetFormat() == PixelFormat_Grayscale16) { for (unsigned int y = 0; y < height; y++) { const uint16_t* p = reinterpret_cast<const uint16_t*>(source.GetConstRow(y)); uint8_t* q = reinterpret_cast<uint8_t*>(target.GetRow(y)); for (unsigned int x = 0; x < width; x++) { uint8_t value = (*p < 256 ? *p : 255); q[0] = value; q[1] = value; q[2] = value; q[3] = 255; p += 1; q += 4; } } return; } if (target.GetFormat() == PixelFormat_BGRA32 && source.GetFormat() == PixelFormat_SignedGrayscale16) { for (unsigned int y = 0; y < height; y++) { const int16_t* p = reinterpret_cast<const int16_t*>(source.GetConstRow(y)); uint8_t* q = reinterpret_cast<uint8_t*>(target.GetRow(y)); for (unsigned int x = 0; x < width; x++) { uint8_t value; if (*p < 0) { value = 0; } else if (*p > 255) { value = 255; } else { value = static_cast<uint8_t>(*p); } q[0] = value; q[1] = value; q[2] = value; q[3] = 255; p += 1; q += 4; } } return; } if (target.GetFormat() == PixelFormat_BGRA32 && source.GetFormat() == PixelFormat_RGB24) { for (unsigned int y = 0; y < height; y++) { const uint8_t* p = reinterpret_cast<const uint8_t*>(source.GetConstRow(y)); uint8_t* q = reinterpret_cast<uint8_t*>(target.GetRow(y)); for (unsigned int x = 0; x < width; x++) { q[0] = p[2]; q[1] = p[1]; q[2] = p[0]; q[3] = 255; p += 3; q += 4; } } return; } if ((target.GetFormat() == PixelFormat_BGRA32 && source.GetFormat() == PixelFormat_RGBA32) || (target.GetFormat() == PixelFormat_RGBA32 && source.GetFormat() == PixelFormat_BGRA32)) { for (unsigned int y = 0; y < height; y++) { const uint8_t* p = reinterpret_cast<const uint8_t*>(source.GetConstRow(y)); uint8_t* q = reinterpret_cast<uint8_t*>(target.GetRow(y)); for (unsigned int x = 0; x < width; x++) { q[0] = p[2]; q[1] = p[1]; q[2] = p[0]; q[3] = p[3]; p += 4; q += 4; } } return; } if (target.GetFormat() == PixelFormat_RGB24 && source.GetFormat() == PixelFormat_RGB48) { for (unsigned int y = 0; y < height; y++) { const uint16_t* p = reinterpret_cast<const uint16_t*>(source.GetConstRow(y)); uint8_t* q = reinterpret_cast<uint8_t*>(target.GetRow(y)); for (unsigned int x = 0; x < width; x++) { q[0] = p[0] >> 8; q[1] = p[1] >> 8; q[2] = p[2] >> 8; p += 3; q += 3; } } return; } if (target.GetFormat() == PixelFormat_Grayscale16 && source.GetFormat() == PixelFormat_Float32) { ConvertFloatToGrayscale<PixelFormat_Grayscale16>(target, source); return; } if (target.GetFormat() == PixelFormat_Grayscale8 && source.GetFormat() == PixelFormat_Float32) { ConvertFloatToGrayscale<PixelFormat_Grayscale8>(target, source); return; } if (target.GetFormat() == PixelFormat_RGB24 && source.GetFormat() == PixelFormat_Float32) { ConvertFloatToGrayscale<PixelFormat_RGB24>(target, source); return; } throw OrthancException(ErrorCode_NotImplemented); } void ImageProcessing::Set(ImageAccessor& image, int64_t value) { switch (image.GetFormat()) { case PixelFormat_Grayscale8: SetInternal<uint8_t>(image, value); return; case PixelFormat_Grayscale16: SetInternal<uint16_t>(image, value); return; case PixelFormat_Grayscale32: SetInternal<uint32_t>(image, value); return; case PixelFormat_Grayscale64: SetInternal<uint64_t>(image, value); return; case PixelFormat_SignedGrayscale16: SetInternal<int16_t>(image, value); return; case PixelFormat_Float32: assert(sizeof(float) == 4); SetInternal<float>(image, value); return; case PixelFormat_RGBA32: case PixelFormat_BGRA32: case PixelFormat_RGB24: { uint8_t v = static_cast<uint8_t>(value); Set(image, v, v, v, v); // Use the color version return; } default: throw OrthancException(ErrorCode_NotImplemented); } } void ImageProcessing::Set(ImageAccessor& image, uint8_t red, uint8_t green, uint8_t blue, uint8_t alpha) { uint8_t p[4]; unsigned int size; switch (image.GetFormat()) { case PixelFormat_Grayscale8: { // New in Orthanc 1.9.0 uint8_t grayscale = (2126 * static_cast<uint16_t>(red) + 7152 * static_cast<uint16_t>(green) + 0722 * static_cast<uint16_t>(blue)) / 10000; Orthanc::ImageProcessing::Set(image, grayscale); return; } case PixelFormat_RGBA32: p[0] = red; p[1] = green; p[2] = blue; p[3] = alpha; size = 4; break; case PixelFormat_BGRA32: p[0] = blue; p[1] = green; p[2] = red; p[3] = alpha; size = 4; break; case PixelFormat_RGB24: p[0] = red; p[1] = green; p[2] = blue; size = 3; break; default: throw OrthancException(ErrorCode_NotImplemented); } const unsigned int width = image.GetWidth(); const unsigned int height = image.GetHeight(); for (unsigned int y = 0; y < height; y++) { uint8_t* q = reinterpret_cast<uint8_t*>(image.GetRow(y)); for (unsigned int x = 0; x < width; x++) { for (unsigned int i = 0; i < size; i++) { q[i] = p[i]; } q += size; } } } void ImageProcessing::Set(ImageAccessor& image, uint8_t red, uint8_t green, uint8_t blue, ImageAccessor& alpha) { uint8_t p[4]; if (alpha.GetWidth() != image.GetWidth() || alpha.GetHeight() != image.GetHeight()) { throw OrthancException(ErrorCode_IncompatibleImageSize); } if (alpha.GetFormat() != PixelFormat_Grayscale8) { throw OrthancException(ErrorCode_NotImplemented); } switch (image.GetFormat()) { case PixelFormat_RGBA32: p[0] = red; p[1] = green; p[2] = blue; break; case PixelFormat_BGRA32: p[0] = blue; p[1] = green; p[2] = red; break; default: throw OrthancException(ErrorCode_NotImplemented); } const unsigned int width = image.GetWidth(); const unsigned int height = image.GetHeight(); for (unsigned int y = 0; y < height; y++) { uint8_t* q = reinterpret_cast<uint8_t*>(image.GetRow(y)); uint8_t* a = reinterpret_cast<uint8_t*>(alpha.GetRow(y)); for (unsigned int x = 0; x < width; x++) { for (unsigned int i = 0; i < 3; i++) { q[i] = p[i]; } q[3] = *a; q += 4; ++a; } } } void ImageProcessing::ShiftRight(ImageAccessor& image, unsigned int shift) { if (image.GetWidth() == 0 || image.GetHeight() == 0 || shift == 0) { // Nothing to do return; } switch (image.GetFormat()) { case PixelFormat_Grayscale8: { ShiftRightInternal<uint8_t>(image, shift); break; } case PixelFormat_Grayscale16: { ShiftRightInternal<uint16_t>(image, shift); break; } default: throw OrthancException(ErrorCode_NotImplemented); } } void ImageProcessing::ShiftLeft(ImageAccessor& image, unsigned int shift) { if (image.GetWidth() == 0 || image.GetHeight() == 0 || shift == 0) { // Nothing to do return; } switch (image.GetFormat()) { case PixelFormat_Grayscale8: { ShiftLeftInternal<uint8_t>(image, shift); break; } case PixelFormat_Grayscale16: { ShiftLeftInternal<uint16_t>(image, shift); break; } default: throw OrthancException(ErrorCode_NotImplemented); } } void ImageProcessing::GetMinMaxIntegerValue(int64_t& minValue, int64_t& maxValue, const ImageAccessor& image) { switch (image.GetFormat()) { case PixelFormat_Grayscale8: { uint8_t a, b; GetMinMaxValueInternal<uint8_t>(a, b, image); minValue = a; maxValue = b; break; } case PixelFormat_Grayscale16: { uint16_t a, b; GetMinMaxValueInternal<uint16_t>(a, b, image); minValue = a; maxValue = b; break; } case PixelFormat_Grayscale32: { uint32_t a, b; GetMinMaxValueInternal<uint32_t>(a, b, image); minValue = a; maxValue = b; break; } case PixelFormat_SignedGrayscale16: { int16_t a, b; GetMinMaxValueInternal<int16_t>(a, b, image); minValue = a; maxValue = b; break; } default: throw OrthancException(ErrorCode_NotImplemented); } } void ImageProcessing::GetMinMaxFloatValue(float& minValue, float& maxValue, const ImageAccessor& image) { switch (image.GetFormat()) { case PixelFormat_Float32: { assert(sizeof(float) == 4); float a, b; /** * WARNING - On floating-point types, the minimal value is * "-FLT_MAX" (as implemented by "::lowest()"), not "FLT_MIN" * (as implemented by "::min()") * https://en.cppreference.com/w/cpp/types/numeric_limits **/ GetMinMaxValueInternal<float>(a, b, image, -std::numeric_limits<float>::max()); minValue = a; maxValue = b; break; } default: throw OrthancException(ErrorCode_NotImplemented); } } void ImageProcessing::AddConstant(ImageAccessor& image, int64_t value) { switch (image.GetFormat()) { case PixelFormat_Grayscale8: AddConstantInternal<uint8_t>(image, value); return; case PixelFormat_Grayscale16: AddConstantInternal<uint16_t>(image, value); return; case PixelFormat_SignedGrayscale16: AddConstantInternal<int16_t>(image, value); return; default: throw OrthancException(ErrorCode_NotImplemented); } } void ImageProcessing::MultiplyConstant(ImageAccessor& image, float factor, bool useRound) { switch (image.GetFormat()) { case PixelFormat_Grayscale8: if (useRound) { MultiplyConstantInternal<uint8_t, true>(image, factor); } else { MultiplyConstantInternal<uint8_t, false>(image, factor); } return; case PixelFormat_Grayscale16: if (useRound) { MultiplyConstantInternal<uint16_t, true>(image, factor); } else { MultiplyConstantInternal<uint16_t, false>(image, factor); } return; case PixelFormat_SignedGrayscale16: if (useRound) { MultiplyConstantInternal<int16_t, true>(image, factor); } else { MultiplyConstantInternal<int16_t, false>(image, factor); } return; default: throw OrthancException(ErrorCode_NotImplemented); } } static bool IsIdentityRescaling(float offset, float scaling) { return (std::abs(offset) <= 10.0f * std::numeric_limits<float>::epsilon() && std::abs(scaling - 1.0f) <= 10.0f * std::numeric_limits<float>::epsilon()); } void ImageProcessing::ShiftScale2(ImageAccessor& image, float offset, float scaling, bool useRound) { // We compute "a * x + b" const float a = scaling; const float b = offset; if (IsIdentityRescaling(offset, scaling)) { return; } switch (image.GetFormat()) { case PixelFormat_Grayscale8: if (useRound) { ShiftScaleInternal<uint8_t, uint8_t, true, false>(image, image, a, b, std::numeric_limits<uint8_t>::min()); } else { ShiftScaleInternal<uint8_t, uint8_t, false, false>(image, image, a, b, std::numeric_limits<uint8_t>::min()); } return; case PixelFormat_Grayscale16: if (useRound) { ShiftScaleInternal<uint16_t, uint16_t, true, false>(image, image, a, b, std::numeric_limits<uint16_t>::min()); } else { ShiftScaleInternal<uint16_t, uint16_t, false, false>(image, image, a, b, std::numeric_limits<uint16_t>::min()); } return; case PixelFormat_SignedGrayscale16: if (useRound) { ShiftScaleInternal<int16_t, int16_t, true, false>(image, image, a, b, std::numeric_limits<int16_t>::min()); } else { ShiftScaleInternal<int16_t, int16_t, false, false>(image, image, a, b, std::numeric_limits<int16_t>::min()); } return; case PixelFormat_Float32: // "::min()" must be replaced by "::lowest()" or "-::max()" if dealing with float or double. if (useRound) { ShiftScaleInternal<float, float, true, false>(image, image, a, b, -std::numeric_limits<float>::max()); } else { ShiftScaleInternal<float, float, false, false>(image, image, a, b, -std::numeric_limits<float>::max()); } return; default: throw OrthancException(ErrorCode_NotImplemented); } } void ImageProcessing::ShiftScale2(ImageAccessor& target, const ImageAccessor& source, float offset, float scaling, bool useRound) { // We compute "a * x + b" const float a = scaling; const float b = offset; if (target.GetFormat() == source.GetFormat() && IsIdentityRescaling(offset, scaling)) { Copy(target, source); return; } switch (target.GetFormat()) { case PixelFormat_Grayscale8: switch (source.GetFormat()) { case PixelFormat_Float32: if (useRound) { ShiftScaleInternal<uint8_t, float, true, false>( target, source, a, b, std::numeric_limits<uint8_t>::min()); } else { ShiftScaleInternal<uint8_t, float, false, false>( target, source, a, b, std::numeric_limits<uint8_t>::min()); } return; default: throw OrthancException(ErrorCode_NotImplemented); } default: throw OrthancException(ErrorCode_NotImplemented); } } void ImageProcessing::ShiftScale(ImageAccessor& image, float offset, float scaling, bool useRound) { // Rewrite "(x + offset) * scaling" as "a * x + b" const float a = scaling; const float b = offset * scaling; ShiftScale2(image, b, a, useRound); } void ImageProcessing::ShiftScale(ImageAccessor& target, const ImageAccessor& source, float offset, float scaling, bool useRound) { // Rewrite "(x + offset) * scaling" as "a * x + b" const float a = scaling; const float b = offset * scaling; ShiftScale2(target, source, b, a, useRound); } void ImageProcessing::Invert(ImageAccessor& image, int64_t maxValue) { const unsigned int width = image.GetWidth(); const unsigned int height = image.GetHeight(); switch (image.GetFormat()) { case PixelFormat_Grayscale16: { uint16_t maxValueUint16 = (uint16_t)(std::min(maxValue, static_cast<int64_t>(std::numeric_limits<uint16_t>::max()))); for (unsigned int y = 0; y < height; y++) { uint16_t* p = reinterpret_cast<uint16_t*>(image.GetRow(y)); for (unsigned int x = 0; x < width; x++, p++) { *p = maxValueUint16 - (*p); } } return; } case PixelFormat_Grayscale8: { uint8_t maxValueUint8 = (uint8_t)(std::min(maxValue, static_cast<int64_t>(std::numeric_limits<uint8_t>::max()))); for (unsigned int y = 0; y < height; y++) { uint8_t* p = reinterpret_cast<uint8_t*>(image.GetRow(y)); for (unsigned int x = 0; x < width; x++, p++) { *p = maxValueUint8 - (*p); } } return; } default: throw OrthancException(ErrorCode_NotImplemented); } } void ImageProcessing::Invert(ImageAccessor& image) { switch (image.GetFormat()) { case PixelFormat_Grayscale8: return Invert(image, 255); default: throw OrthancException(ErrorCode_NotImplemented); // you should use the Invert(image, maxValue) overload } } namespace { template <PixelFormat Format> class BresenhamPixelWriter { private: typedef typename PixelTraits<Format>::PixelType PixelType; ImageAccessor& image_; PixelType value_; void PlotLineLow(int x0, int y0, int x1, int y1) { int dx = x1 - x0; int dy = y1 - y0; int yi = 1; if (dy < 0) { yi = -1; dy = -dy; } int d = 2 * dy - dx; int y = y0; for (int x = x0; x <= x1; x++) { Write(x, y); if (d > 0) { y = y + yi; d = d - 2 * dx; } d = d + 2*dy; } } void PlotLineHigh(int x0, int y0, int x1, int y1) { int dx = x1 - x0; int dy = y1 - y0; int xi = 1; if (dx < 0) { xi = -1; dx = -dx; } int d = 2 * dx - dy; int x = x0; for (int y = y0; y <= y1; y++) { Write(x, y); if (d > 0) { x = x + xi; d = d - 2 * dy; } d = d + 2 * dx; } } public: BresenhamPixelWriter(ImageAccessor& image, int64_t value) : image_(image), value_(PixelTraits<Format>::IntegerToPixel(value)) { } BresenhamPixelWriter(ImageAccessor& image, const PixelType& value) : image_(image), value_(value) { } void Write(int x, int y) { if (x >= 0 && y >= 0 && static_cast<unsigned int>(x) < image_.GetWidth() && static_cast<unsigned int>(y) < image_.GetHeight()) { PixelType* p = reinterpret_cast<PixelType*>(image_.GetRow(y)); p[x] = value_; } } void DrawSegment(int x0, int y0, int x1, int y1) { // This is an implementation of Bresenham's line algorithm // https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm#All_cases if (abs(y1 - y0) < abs(x1 - x0)) { if (x0 > x1) { PlotLineLow(x1, y1, x0, y0); } else { PlotLineLow(x0, y0, x1, y1); } } else { if (y0 > y1) { PlotLineHigh(x1, y1, x0, y0); } else { PlotLineHigh(x0, y0, x1, y1); } } } }; } void ImageProcessing::DrawLineSegment(ImageAccessor& image, int x0, int y0, int x1, int y1, int64_t value) { switch (image.GetFormat()) { case PixelFormat_Grayscale8: { BresenhamPixelWriter<PixelFormat_Grayscale8> writer(image, value); writer.DrawSegment(x0, y0, x1, y1); break; } case PixelFormat_Grayscale16: { BresenhamPixelWriter<PixelFormat_Grayscale16> writer(image, value); writer.DrawSegment(x0, y0, x1, y1); break; } case PixelFormat_SignedGrayscale16: { BresenhamPixelWriter<PixelFormat_SignedGrayscale16> writer(image, value); writer.DrawSegment(x0, y0, x1, y1); break; } default: throw OrthancException(ErrorCode_NotImplemented); } } void ImageProcessing::DrawLineSegment(ImageAccessor& image, int x0, int y0, int x1, int y1, uint8_t red, uint8_t green, uint8_t blue, uint8_t alpha) { switch (image.GetFormat()) { case PixelFormat_BGRA32: { PixelTraits<PixelFormat_BGRA32>::PixelType pixel; pixel.red_ = red; pixel.green_ = green; pixel.blue_ = blue; pixel.alpha_ = alpha; BresenhamPixelWriter<PixelFormat_BGRA32> writer(image, pixel); writer.DrawSegment(x0, y0, x1, y1); break; } case PixelFormat_RGBA32: { PixelTraits<PixelFormat_RGBA32>::PixelType pixel; pixel.red_ = red; pixel.green_ = green; pixel.blue_ = blue; pixel.alpha_ = alpha; BresenhamPixelWriter<PixelFormat_RGBA32> writer(image, pixel); writer.DrawSegment(x0, y0, x1, y1); break; } case PixelFormat_RGB24: { PixelTraits<PixelFormat_RGB24>::PixelType pixel; pixel.red_ = red; pixel.green_ = green; pixel.blue_ = blue; BresenhamPixelWriter<PixelFormat_RGB24> writer(image, pixel); writer.DrawSegment(x0, y0, x1, y1); break; } default: throw OrthancException(ErrorCode_NotImplemented); } } void ComputePolygonExtent(int32_t& left, int32_t& right, int32_t& top, int32_t& bottom, const std::vector<ImageProcessing::ImagePoint>& points) { left = std::numeric_limits<int32_t>::max(); right = std::numeric_limits<int32_t>::min(); top = std::numeric_limits<int32_t>::max(); bottom = std::numeric_limits<int32_t>::min(); for (size_t i = 0; i < points.size(); i++) { const ImageProcessing::ImagePoint& p = points[i]; left = std::min(p.GetX(), left); right = std::max(p.GetX(), right); bottom = std::max(p.GetY(), bottom); top = std::min(p.GetY(), top); } } namespace { #define USE_POLYGON_FRACTIONS 1 class PolygonEdge { private: int yUpper; #if USE_POLYGON_FRACTIONS == 1 int x; int xOffset; int dxPerScanNumerator; int dxPerScanDenominator; #else float xIntersect; float dxPerScan; #endif public: PolygonEdge(const ImageProcessing::ImagePoint& lower, const ImageProcessing::ImagePoint& upper, int yComp) { // cf. "makeEdgeRec()" in textbook assert(upper.GetY() != lower.GetY()); #if USE_POLYGON_FRACTIONS == 1 x = lower.GetX(); xOffset = 0; dxPerScanNumerator = upper.GetX() - lower.GetX(); dxPerScanDenominator = upper.GetY() - lower.GetY(); #else dxPerScan = (static_cast<float>(upper.GetX() - lower.GetX()) / static_cast<float>(upper.GetY() - lower.GetY())); xIntersect = lower.GetX(); #endif if (upper.GetY() < yComp) { yUpper = upper.GetY() - 1; } else { yUpper = upper.GetY(); } } void NextScanLine() { #if USE_POLYGON_FRACTIONS == 1 xOffset += dxPerScanNumerator; while (xOffset >= dxPerScanDenominator) { x++; xOffset -= dxPerScanDenominator; } while (xOffset < 0) { x--; xOffset += dxPerScanDenominator; } #else xIntersect += dxPerScan; #endif } int GetEnterX() const { #if USE_POLYGON_FRACTIONS == 1 assert(xOffset >= 0 && xOffset < dxPerScanDenominator); if (xOffset == 0) { return x; } else { return x + 1; } #else return static_cast<int>(std::ceil(xIntersect)); #endif } int GetExitX() const { #if USE_POLYGON_FRACTIONS == 1 assert(xOffset >= 0 && xOffset < dxPerScanDenominator); return x; #else return static_cast<int>(std::floor(xIntersect)); #endif } int GetUpperY() const { return yUpper; } bool operator< (const PolygonEdge& other) const { #if USE_POLYGON_FRACTIONS == 1 assert(xOffset >= 0 && xOffset < dxPerScanDenominator); assert(other.xOffset >= 0 && other.xOffset < other.dxPerScanDenominator); return x < other.x; #else // cf. "insertEdge()" in textbook return (xIntersect < other.xIntersect); #endif } }; } // For an index, return y-coordinate of next nonhorizontal line static int GetPolygonNextY(const std::vector<ImageProcessing::ImagePoint>& points, size_t k) { // cf. "yNext()" in textbook size_t j = k; for (;;) { j++; if (j == points.size()) { j = 0; } if (points[k].GetY() != points[j].GetY()) { return points[j].GetY(); } } } static int GetPolygonPreviousY(const std::vector<ImageProcessing::ImagePoint>& points, size_t k) { size_t j = k; for (;;) { if (j > 0) { j --; } else { j = points.size() - 1; } if (points[k].GetY() != points[j].GetY()) { return points[j].GetY(); } } } void ImageProcessing::FillPolygon(IPolygonFiller& filler, const std::vector<ImagePoint>& points) { /** * This implementation is a C++ adaption of Section 3.11 (pages * 117-124) of textbook "Computer Graphics - C Version (2nd * Edition)" by Hearn and Baker, 1997. **/ typedef std::map<int, std::list<PolygonEdge> > EdgeTable; if (points.size() < 2) { return; } bool onlyHorizontalSegments = true; for (size_t i = 1; i < points.size(); i++) { if (points[0].GetY() != points[i].GetY()) { onlyHorizontalSegments = false; break; } } if (onlyHorizontalSegments) { // Degenerate case: There are only horizontal lines. If this is // the case, "GetPolygonPreviousY()" would be an infinite loop int x1 = points[0].GetX(); int x2 = x1; for (size_t i = 1; i < points.size(); i++) { assert(points[i].GetY() == points[0].GetY()); const int x = points[i].GetX(); x1 = std::min(x1, x); x2 = std::max(x2, x); } filler.Fill(points[0].GetY(), x1, x2); return; } EdgeTable globalEdgeTable; // cf. "buildEdgeList()" in textbook // Error in the textbook: we use "GetPolygonPreviousY()" instead of "points.size() - 2" int yPrev = GetPolygonPreviousY(points, points.size() - 1); ImagePoint v1(points[points.size() - 1]); for (size_t i = 0; i < points.size(); i++) { ImagePoint v2(points[i]); if (v1.GetY() != v2.GetY()) { // Non-horizontal line if (v1.GetY() < v2.GetY()) { // Up-going edge PolygonEdge edge(v1, v2, GetPolygonNextY(points, i)); globalEdgeTable[v1.GetY()].push_back(edge); } else if (v1.GetY() > v2.GetY()) { // Down-going edge PolygonEdge edge(v2, v1, yPrev); globalEdgeTable[v2.GetY()].push_back(edge); } // Error in the textbook: "yPrev" must NOT be updated on horizontal lines yPrev = v1.GetY(); } v1 = v2; } assert(!globalEdgeTable.empty()); std::vector<PolygonEdge> activeEdges; for (EdgeTable::const_iterator it = globalEdgeTable.begin(); it != globalEdgeTable.end(); ++it) { // cf. "buildActiveList()" in textbook activeEdges.reserve(activeEdges.size() + it->second.size()); for (std::list<PolygonEdge>::const_iterator it2 = it->second.begin(); it2 != it->second.end(); ++it2) { activeEdges.push_back(*it2); } assert(!activeEdges.empty()); EdgeTable::const_iterator next = it; ++next; int rampEnd; if (next == globalEdgeTable.end()) { rampEnd = activeEdges[0].GetUpperY() + 1; for (size_t i = 1; i < activeEdges.size(); i++) { rampEnd = std::max(rampEnd, activeEdges[i].GetUpperY() + 1); } } else { rampEnd = next->first; } for (int y = it->first; y < rampEnd; y++) { // cf. "updateActiveList()" in textbook std::vector<PolygonEdge> stillActive; stillActive.reserve(activeEdges.size()); for (size_t i = 0; i < activeEdges.size(); i++) { if (y <= activeEdges[i].GetUpperY()) { stillActive.push_back(activeEdges[i]); } } activeEdges.swap(stillActive); assert(activeEdges.size() % 2 == 0); std::sort(activeEdges.begin(), activeEdges.end()); // cf. "fillScan()" in textbook for (size_t k = 0; k + 1 < activeEdges.size(); ) { int a = activeEdges[k].GetExitX(); int b = activeEdges[k + 1].GetEnterX(); // Fix wrt. the textbook: merge overlapping segments k += 2; while (k + 1 < activeEdges.size() && activeEdges[k].GetExitX() == b) { assert(a <= b); b = activeEdges[k + 1].GetEnterX(); k += 2; } assert(a <= b); filler.Fill(y, a, b); } // cf. "updateActiveList()" in textbook for (size_t k = 0; k < activeEdges.size(); k++) { activeEdges[k].NextScanLine(); } } } } void ImageProcessing::FillPolygon(ImageAccessor& image, const std::vector<ImagePoint>& points, int64_t value) { class Filler : public IPolygonFiller { private: ImageAccessor& image_; int64_t value_; public: Filler(ImageAccessor& image, int64_t value) : image_(image), value_(value) { } virtual void Fill(int y, int x1, int x2) ORTHANC_OVERRIDE { assert(x1 <= x2); if (x1 < static_cast<int>(image_.GetWidth()) && x2 >= 0 && y >= 0 && y < static_cast<int>(image_.GetHeight())) { unsigned int yy = static_cast<unsigned int>(y); unsigned int a = static_cast<unsigned int>(std::max(0, x1)); unsigned int b = static_cast<unsigned int>(std::min(x2, static_cast<int>(image_.GetWidth()) - 1)); assert(a <= b); ImageAccessor region; image_.GetRegion(region, a, yy, b - a + 1, 1); Set(region, value_); } } }; if (image.GetFormat() == PixelFormat_Grayscale8 || image.GetFormat() == PixelFormat_Grayscale16 || image.GetFormat() == PixelFormat_SignedGrayscale16) { Filler filler(image, value); FillPolygon(filler, points); } else { throw OrthancException(ErrorCode_NotImplemented); } } template <PixelFormat Format> static void ResizeInternal(ImageAccessor& target, const ImageAccessor& source) { assert(target.GetFormat() == source.GetFormat() && target.GetFormat() == Format); const unsigned int sourceWidth = source.GetWidth(); const unsigned int sourceHeight = source.GetHeight(); const unsigned int targetWidth = target.GetWidth(); const unsigned int targetHeight = target.GetHeight(); if (targetWidth == 0 || targetHeight == 0) { return; } if (sourceWidth == 0 || sourceHeight == 0) { // Avoids division by zero below ImageProcessing::Set(target, 0); return; } const float scaleX = static_cast<float>(sourceWidth) / static_cast<float>(targetWidth); const float scaleY = static_cast<float>(sourceHeight) / static_cast<float>(targetHeight); /** * Create two lookup tables to quickly know the (x,y) position * in the source image, given the (x,y) position in the target * image. **/ std::vector<unsigned int> lookupX(targetWidth); for (unsigned int x = 0; x < targetWidth; x++) { int sourceX = static_cast<int>(std::floor((static_cast<float>(x) + 0.5f) * scaleX)); if (sourceX < 0) { sourceX = 0; // Should never happen } else if (sourceX >= static_cast<int>(sourceWidth)) { sourceX = sourceWidth - 1; } lookupX[x] = static_cast<unsigned int>(sourceX); } std::vector<unsigned int> lookupY(targetHeight); for (unsigned int y = 0; y < targetHeight; y++) { int sourceY = static_cast<int>(std::floor((static_cast<float>(y) + 0.5f) * scaleY)); if (sourceY < 0) { sourceY = 0; // Should never happen } else if (sourceY >= static_cast<int>(sourceHeight)) { sourceY = sourceHeight - 1; } lookupY[y] = static_cast<unsigned int>(sourceY); } /** * Actual resizing **/ for (unsigned int targetY = 0; targetY < targetHeight; targetY++) { unsigned int sourceY = lookupY[targetY]; for (unsigned int targetX = 0; targetX < targetWidth; targetX++) { unsigned int sourceX = lookupX[targetX]; typename ImageTraits<Format>::PixelType pixel; ImageTraits<Format>::GetPixel(pixel, source, sourceX, sourceY); ImageTraits<Format>::SetPixel(target, pixel, targetX, targetY); } } } void ImageProcessing::Resize(ImageAccessor& target, const ImageAccessor& source) { if (source.GetFormat() != target.GetFormat()) { throw OrthancException(ErrorCode_IncompatibleImageFormat); } if (source.GetWidth() == target.GetWidth() && source.GetHeight() == target.GetHeight()) { Copy(target, source); return; } switch (source.GetFormat()) { case PixelFormat_Grayscale8: ResizeInternal<PixelFormat_Grayscale8>(target, source); break; case PixelFormat_Float32: ResizeInternal<PixelFormat_Float32>(target, source); break; case PixelFormat_RGB24: ResizeInternal<PixelFormat_RGB24>(target, source); break; default: throw OrthancException(ErrorCode_NotImplemented); } } ImageAccessor* ImageProcessing::Halve(const ImageAccessor& source, bool forceMinimalPitch) { std::unique_ptr<Image> target(new Image(source.GetFormat(), source.GetWidth() / 2, source.GetHeight() / 2, forceMinimalPitch)); Resize(*target, source); return target.release(); } template <PixelFormat Format> static void FlipXInternal(ImageAccessor& image) { const unsigned int height = image.GetHeight(); const unsigned int width = image.GetWidth(); for (unsigned int y = 0; y < height; y++) { for (unsigned int x1 = 0; x1 < width / 2; x1++) { unsigned int x2 = width - 1 - x1; typename ImageTraits<Format>::PixelType a, b; ImageTraits<Format>::GetPixel(a, image, x1, y); ImageTraits<Format>::GetPixel(b, image, x2, y); ImageTraits<Format>::SetPixel(image, a, x2, y); ImageTraits<Format>::SetPixel(image, b, x1, y); } } } void ImageProcessing::FlipX(ImageAccessor& image) { switch (image.GetFormat()) { case PixelFormat_Grayscale8: FlipXInternal<PixelFormat_Grayscale8>(image); break; case PixelFormat_RGB24: FlipXInternal<PixelFormat_RGB24>(image); break; default: throw OrthancException(ErrorCode_NotImplemented); } } template <PixelFormat Format> static void FlipYInternal(ImageAccessor& image) { const unsigned int height = image.GetHeight(); const unsigned int width = image.GetWidth(); for (unsigned int y1 = 0; y1 < height / 2; y1++) { unsigned int y2 = height - 1 - y1; for (unsigned int x = 0; x < width; x++) { typename ImageTraits<Format>::PixelType a, b; ImageTraits<Format>::GetPixel(a, image, x, y1); ImageTraits<Format>::GetPixel(b, image, x, y2); ImageTraits<Format>::SetPixel(image, a, x, y2); ImageTraits<Format>::SetPixel(image, b, x, y1); } } } void ImageProcessing::FlipY(ImageAccessor& image) { switch (image.GetFormat()) { case PixelFormat_Grayscale8: FlipYInternal<PixelFormat_Grayscale8>(image); break; case PixelFormat_RGB24: FlipYInternal<PixelFormat_RGB24>(image); break; default: throw OrthancException(ErrorCode_NotImplemented); } } // This is a slow implementation of horizontal convolution on one // individual channel, that checks for out-of-image values template <typename RawPixel, unsigned int ChannelsCount> static float GetHorizontalConvolutionFloatSecure(const ImageAccessor& source, const std::vector<float>& horizontal, size_t horizontalAnchor, unsigned int x, unsigned int y, float leftBorder, float rightBorder, unsigned int channel) { const RawPixel* row = reinterpret_cast<const RawPixel*>(source.GetConstRow(y)) + channel; float p = 0; for (unsigned int k = 0; k < horizontal.size(); k++) { float value; if (x + k < horizontalAnchor) // Negation of "x - horizontalAnchor + k >= 0" { value = leftBorder; } else if (x + k >= source.GetWidth() + horizontalAnchor) // Negation of "x - horizontalAnchor + k < width" { value = rightBorder; } else { // The value lies within the image value = row[(x - horizontalAnchor + k) * ChannelsCount]; } p += value * horizontal[k]; } return p; } // This is an implementation of separable convolution that uses // floating-point arithmetics, and an intermediate Float32 // image. The out-of-image values are taken as the border // value. Further optimization is possible. template <typename RawPixel, unsigned int ChannelsCount, bool UseRound> static void SeparableConvolutionFloat(ImageAccessor& image /* inplace */, const std::vector<float>& horizontal, size_t horizontalAnchor, const std::vector<float>& vertical, size_t verticalAnchor, float normalization) { // WARNING - "::min()" should be replaced by "::lowest()" if // dealing with float or double (which is not the case so far) assert(sizeof(RawPixel) <= 2); // Safeguard to remember about "float/double" const unsigned int width = image.GetWidth(); const unsigned int height = image.GetHeight(); /** * Horizontal convolution **/ Image tmp(PixelFormat_Float32, ChannelsCount * width, height, false); for (unsigned int y = 0; y < height; y++) { const RawPixel* row = reinterpret_cast<const RawPixel*>(image.GetConstRow(y)); float leftBorder[ChannelsCount], rightBorder[ChannelsCount]; for (unsigned int c = 0; c < ChannelsCount; c++) { leftBorder[c] = row[c]; rightBorder[c] = row[ChannelsCount * (width - 1) + c]; } float* p = static_cast<float*>(tmp.GetRow(y)); if (width < horizontal.size()) { // It is not possible to have the full kernel within the image, use the direct implementation for (unsigned int x = 0; x < width; x++) { for (unsigned int c = 0; c < ChannelsCount; c++, p++) { *p = GetHorizontalConvolutionFloatSecure<RawPixel, ChannelsCount> (image, horizontal, horizontalAnchor, x, y, leftBorder[c], rightBorder[c], c); } } } else { // Deal with the left border for (unsigned int x = 0; x < horizontalAnchor; x++) { for (unsigned int c = 0; c < ChannelsCount; c++, p++) { *p = GetHorizontalConvolutionFloatSecure<RawPixel, ChannelsCount> (image, horizontal, horizontalAnchor, x, y, leftBorder[c], rightBorder[c], c); } } // Deal with the central portion of the image (all pixel values // scanned by the kernel lie inside the image) for (unsigned int x = 0; x < width - horizontal.size() + 1; x++) { for (unsigned int c = 0; c < ChannelsCount; c++, p++) { *p = 0; for (unsigned int k = 0; k < horizontal.size(); k++) { *p += static_cast<float>(row[(x + k) * ChannelsCount + c]) * horizontal[k]; } } } // Deal with the right border for (unsigned int x = static_cast<unsigned int>( horizontalAnchor + width - horizontal.size() + 1); x < width; x++) { for (unsigned int c = 0; c < ChannelsCount; c++, p++) { *p = GetHorizontalConvolutionFloatSecure<RawPixel, ChannelsCount> (image, horizontal, horizontalAnchor, x, y, leftBorder[c], rightBorder[c], c); } } } } /** * Vertical convolution **/ std::vector<const float*> rows(vertical.size()); for (unsigned int y = 0; y < height; y++) { for (unsigned int k = 0; k < vertical.size(); k++) { if (y + k < verticalAnchor) { rows[k] = reinterpret_cast<const float*>(tmp.GetConstRow(0)); // Use top border } else if (y + k >= height + verticalAnchor) { rows[k] = reinterpret_cast<const float*>(tmp.GetConstRow(height - 1)); // Use bottom border } else { rows[k] = reinterpret_cast<const float*>(tmp.GetConstRow(static_cast<unsigned int>(y + k - verticalAnchor))); } } RawPixel* p = reinterpret_cast<RawPixel*>(image.GetRow(y)); for (unsigned int x = 0; x < width; x++) { for (unsigned int c = 0; c < ChannelsCount; c++, p++) { float accumulator = 0; for (unsigned int k = 0; k < vertical.size(); k++) { accumulator += rows[k][ChannelsCount * x + c] * vertical[k]; } accumulator *= normalization; if (accumulator <= static_cast<float>(std::numeric_limits<RawPixel>::min())) { *p = std::numeric_limits<RawPixel>::min(); } else if (accumulator >= static_cast<float>(std::numeric_limits<RawPixel>::max())) { *p = std::numeric_limits<RawPixel>::max(); } else { if (UseRound) { assert(sizeof(RawPixel) < sizeof(int)); *p = static_cast<RawPixel>(boost::math::iround(accumulator)); } else { *p = static_cast<RawPixel>(accumulator); } } } } } } void ImageProcessing::SeparableConvolution(ImageAccessor& image /* inplace */, const std::vector<float>& horizontal, size_t horizontalAnchor, const std::vector<float>& vertical, size_t verticalAnchor, bool useRound) { if (horizontal.size() == 0 || vertical.size() == 0 || horizontalAnchor >= horizontal.size() || verticalAnchor >= vertical.size()) { throw OrthancException(ErrorCode_ParameterOutOfRange); } if (image.GetWidth() == 0 || image.GetHeight() == 0) { return; } /** * Compute normalization **/ float sumHorizontal = 0; for (size_t i = 0; i < horizontal.size(); i++) { sumHorizontal += horizontal[i]; } float sumVertical = 0; for (size_t i = 0; i < vertical.size(); i++) { sumVertical += vertical[i]; } if (fabsf(sumHorizontal) <= std::numeric_limits<float>::epsilon() || fabsf(sumVertical) <= std::numeric_limits<float>::epsilon()) { throw OrthancException(ErrorCode_ParameterOutOfRange, "Singular convolution kernel"); } const float normalization = 1.0f / (sumHorizontal * sumVertical); switch (image.GetFormat()) { case PixelFormat_Grayscale8: if (useRound) { SeparableConvolutionFloat<uint8_t, 1u, true> (image, horizontal, horizontalAnchor, vertical, verticalAnchor, normalization); } else { SeparableConvolutionFloat<uint8_t, 1u, false> (image, horizontal, horizontalAnchor, vertical, verticalAnchor, normalization); } break; case PixelFormat_RGB24: if (useRound) { SeparableConvolutionFloat<uint8_t, 3u, true> (image, horizontal, horizontalAnchor, vertical, verticalAnchor, normalization); } else { SeparableConvolutionFloat<uint8_t, 3u, false> (image, horizontal, horizontalAnchor, vertical, verticalAnchor, normalization); } break; default: throw OrthancException(ErrorCode_NotImplemented); } } void ImageProcessing::SmoothGaussian5x5(ImageAccessor& image, bool useRound) { std::vector<float> kernel(5); kernel[0] = 1; kernel[1] = 4; kernel[2] = 6; kernel[3] = 4; kernel[4] = 1; SeparableConvolution(image, kernel, 2, kernel, 2, useRound); } void ImageProcessing::FitSize(ImageAccessor& target, const ImageAccessor& source) { if (target.GetWidth() == 0 || target.GetHeight() == 0) { return; } if (source.GetWidth() == target.GetWidth() && source.GetHeight() == target.GetHeight()) { Copy(target, source); return; } Set(target, 0); // Preserve the aspect ratio float cw = static_cast<float>(source.GetWidth()); float ch = static_cast<float>(source.GetHeight()); float r = std::min( static_cast<float>(target.GetWidth()) / cw, static_cast<float>(target.GetHeight()) / ch); unsigned int sw = std::min(static_cast<unsigned int>(boost::math::iround(cw * r)), target.GetWidth()); unsigned int sh = std::min(static_cast<unsigned int>(boost::math::iround(ch * r)), target.GetHeight()); Image resized(target.GetFormat(), sw, sh, false); //ImageProcessing::SmoothGaussian5x5(source); ImageProcessing::Resize(resized, source); assert(target.GetWidth() >= resized.GetWidth() && target.GetHeight() >= resized.GetHeight()); unsigned int offsetX = (target.GetWidth() - resized.GetWidth()) / 2; unsigned int offsetY = (target.GetHeight() - resized.GetHeight()) / 2; ImageAccessor region; target.GetRegion(region, offsetX, offsetY, resized.GetWidth(), resized.GetHeight()); ImageProcessing::Copy(region, resized); } ImageAccessor* ImageProcessing::FitSize(const ImageAccessor& source, unsigned int width, unsigned int height) { std::unique_ptr<ImageAccessor> target(new Image(source.GetFormat(), width, height, false)); FitSize(*target, source); return target.release(); } ImageAccessor* ImageProcessing::FitSizeKeepAspectRatio(const ImageAccessor& source, unsigned int width, unsigned int height) { std::unique_ptr<ImageAccessor> target(new Image(source.GetFormat(), width, height, false)); Set(*target, 0); if (width != 0 && height != 0 && source.GetWidth() != 0 && source.GetHeight() != 0) { float ratio = std::min(static_cast<float>(width) / static_cast<float>(source.GetWidth()), static_cast<float>(height) / static_cast<float>(source.GetHeight())); unsigned int resizedWidth = static_cast<unsigned int>( boost::math::iround(ratio * static_cast<float>(source.GetWidth()))); unsigned int resizedHeight = static_cast<unsigned int>( boost::math::iround(ratio * static_cast<float>(source.GetHeight()))); std::unique_ptr<ImageAccessor> resized(FitSize(source, resizedWidth, resizedHeight)); ImageAccessor region; target->GetRegion(region, (width - resizedWidth) / 2, (height - resizedHeight) / 2, resizedWidth, resizedHeight); Copy(region, *resized); } return target.release(); } void ImageProcessing::ConvertJpegYCbCrToRgb(ImageAccessor& image) { // http://dicom.nema.org/medical/dicom/current/output/chtml/part03/sect_C.7.6.3.html#sect_C.7.6.3.1.2 // https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion // TODO - Check out the outcome of Mathieu's discussion about // truncation of YCbCr-to-RGB conversion: // https://groups.google.com/forum/#!msg/comp.protocols.dicom/JHuGeyWbTz8/ARoTWrJzAQAJ const unsigned int width = image.GetWidth(); const unsigned int height = image.GetHeight(); const unsigned int pitch = image.GetPitch(); uint8_t* buffer = reinterpret_cast<uint8_t*>(image.GetBuffer()); if (image.GetFormat() != PixelFormat_RGB24 || pitch < 3 * width) { throw OrthancException(ErrorCode_IncompatibleImageFormat); } for (unsigned int y = 0; y < height; y++) { uint8_t* p = buffer + y * pitch; for (unsigned int x = 0; x < width; x++, p += 3) { const float Y = p[0]; const float Cb = p[1]; const float Cr = p[2]; const float result[3] = { Y + 1.402f * (Cr - 128.0f), Y - 0.344136f * (Cb - 128.0f) - 0.714136f * (Cr - 128.0f), Y + 1.772f * (Cb - 128.0f) }; for (uint8_t i = 0; i < 3 ; i++) { if (result[i] < 0) { p[i] = 0; } else if (result[i] > 255) { p[i] = 255; } else { p[i] = static_cast<uint8_t>(result[i]); } } } } } void ImageProcessing::SwapEndianness(ImageAccessor& image /* inplace */) { const unsigned int width = image.GetWidth(); const unsigned int height = image.GetHeight(); switch (image.GetFormat()) { case PixelFormat_Grayscale8: case PixelFormat_RGB24: case PixelFormat_RGBA32: case PixelFormat_BGRA32: // No swapping required break; case PixelFormat_Grayscale16: case PixelFormat_SignedGrayscale16: for (unsigned int y = 0; y < height; y++) { uint8_t* t = reinterpret_cast<uint8_t*>(image.GetRow(y)); for (unsigned int x = 0; x < width; x++) { uint8_t a = t[0]; t[0] = t[1]; t[1] = a; t += 2; } } break; case PixelFormat_Grayscale32: case PixelFormat_Float32: for (unsigned int y = 0; y < height; y++) { uint8_t* t = reinterpret_cast<uint8_t*>(image.GetRow(y)); for (unsigned int x = 0; x < width; x++) { uint8_t a = t[0]; uint8_t b = t[1]; t[0] = t[3]; t[1] = t[2]; t[2] = b; t[3] = a; t += 4; } } break; case PixelFormat_RGB48: // uint16_t per channel for (unsigned int y = 0; y < height; y++) { uint8_t* t = reinterpret_cast<uint8_t*>(image.GetRow(y)); for (unsigned int x = 0; x < 3 * width; x++) { uint8_t a = t[0]; t[0] = t[1]; t[1] = a; t += 2; } } break; default: throw OrthancException(ErrorCode_NotImplemented); } } }