Mercurial > hg > orthanc
view Core/Images/ImageProcessing.cpp @ 3285:3f7d4b735f95
upgrade to libpng 1.6.36
author | Sebastien Jodogne <s.jodogne@gmail.com> |
---|---|
date | Thu, 21 Feb 2019 18:15:05 +0100 |
parents | 59a184cbb596 |
children | a15a4b9d8c00 |
line wrap: on
line source
/** * Orthanc - A Lightweight, RESTful DICOM Store * Copyright (C) 2012-2016 Sebastien Jodogne, Medical Physics * Department, University Hospital of Liege, Belgium * Copyright (C) 2017-2019 Osimis S.A., Belgium * * This program is free software: you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * In addition, as a special exception, the copyright holders of this * program give permission to link the code of its release with the * OpenSSL project's "OpenSSL" library (or with modified versions of it * that use the same license as the "OpenSSL" library), and distribute * the linked executables. You must obey the GNU General Public License * in all respects for all of the code used other than "OpenSSL". If you * modify file(s) with this exception, you may extend this exception to * your version of the file(s), but you are not obligated to do so. If * you do not wish to do so, delete this exception statement from your * version. If you delete this exception statement from all source files * in the program, then also delete it here. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. **/ #include "../PrecompiledHeaders.h" #include "ImageProcessing.h" #include "PixelTraits.h" #include "../OrthancException.h" #include <boost/math/special_functions/round.hpp> #include <cassert> #include <string.h> #include <limits> #include <stdint.h> #include <algorithm> namespace Orthanc { double ImageProcessing::ImagePoint::GetDistanceTo(const ImagePoint& other) const { double dx = (double)(other.GetX() - GetX()); double dy = (double)(other.GetY() - GetY()); return sqrt(dx * dx + dy * dy); } template <typename TargetType, typename SourceType> static void ConvertInternal(ImageAccessor& target, const ImageAccessor& source) { const TargetType minValue = std::numeric_limits<TargetType>::min(); const TargetType maxValue = std::numeric_limits<TargetType>::max(); const unsigned int width = source.GetWidth(); const unsigned int height = source.GetHeight(); for (unsigned int y = 0; y < height; y++) { TargetType* t = reinterpret_cast<TargetType*>(target.GetRow(y)); const SourceType* s = reinterpret_cast<const SourceType*>(source.GetConstRow(y)); for (unsigned int x = 0; x < width; x++, t++, s++) { if (static_cast<int32_t>(*s) < static_cast<int32_t>(minValue)) { *t = minValue; } else if (static_cast<int32_t>(*s) > static_cast<int32_t>(maxValue)) { *t = maxValue; } else { *t = static_cast<TargetType>(*s); } } } } template <typename SourceType> static void ConvertGrayscaleToFloat(ImageAccessor& target, const ImageAccessor& source) { assert(sizeof(float) == 4); const unsigned int width = source.GetWidth(); const unsigned int height = source.GetHeight(); for (unsigned int y = 0; y < height; y++) { float* t = reinterpret_cast<float*>(target.GetRow(y)); const SourceType* s = reinterpret_cast<const SourceType*>(source.GetConstRow(y)); for (unsigned int x = 0; x < width; x++, t++, s++) { *t = static_cast<float>(*s); } } } template <PixelFormat TargetFormat> static void ConvertFloatToGrayscale(ImageAccessor& target, const ImageAccessor& source) { typedef typename PixelTraits<TargetFormat>::PixelType TargetType; assert(sizeof(float) == 4); const unsigned int width = source.GetWidth(); const unsigned int height = source.GetHeight(); for (unsigned int y = 0; y < height; y++) { TargetType* q = reinterpret_cast<TargetType*>(target.GetRow(y)); const float* p = reinterpret_cast<const float*>(source.GetConstRow(y)); for (unsigned int x = 0; x < width; x++, p++, q++) { PixelTraits<TargetFormat>::FloatToPixel(*q, *p); } } } template <typename TargetType> static void ConvertColorToGrayscale(ImageAccessor& target, const ImageAccessor& source) { assert(source.GetFormat() == PixelFormat_RGB24); const TargetType minValue = std::numeric_limits<TargetType>::min(); const TargetType maxValue = std::numeric_limits<TargetType>::max(); const unsigned int width = source.GetWidth(); const unsigned int height = source.GetHeight(); for (unsigned int y = 0; y < height; y++) { TargetType* t = reinterpret_cast<TargetType*>(target.GetRow(y)); const uint8_t* s = reinterpret_cast<const uint8_t*>(source.GetConstRow(y)); for (unsigned int x = 0; x < width; x++, t++, s += 3) { // Y = 0.2126 R + 0.7152 G + 0.0722 B int32_t v = (2126 * static_cast<int32_t>(s[0]) + 7152 * static_cast<int32_t>(s[1]) + 0722 * static_cast<int32_t>(s[2])) / 10000; if (static_cast<int32_t>(v) < static_cast<int32_t>(minValue)) { *t = minValue; } else if (static_cast<int32_t>(v) > static_cast<int32_t>(maxValue)) { *t = maxValue; } else { *t = static_cast<TargetType>(v); } } } } static void MemsetZeroInternal(ImageAccessor& image) { const unsigned int height = image.GetHeight(); const size_t lineSize = image.GetBytesPerPixel() * image.GetWidth(); const size_t pitch = image.GetPitch(); uint8_t *p = reinterpret_cast<uint8_t*>(image.GetBuffer()); for (unsigned int y = 0; y < height; y++) { memset(p, 0, lineSize); p += pitch; } } template <typename PixelType> static void SetInternal(ImageAccessor& image, int64_t constant) { if (constant == 0 && (image.GetFormat() == PixelFormat_Grayscale8 || image.GetFormat() == PixelFormat_Grayscale16 || image.GetFormat() == PixelFormat_Grayscale32 || image.GetFormat() == PixelFormat_Grayscale64 || image.GetFormat() == PixelFormat_SignedGrayscale16)) { MemsetZeroInternal(image); } else { const unsigned int width = image.GetWidth(); const unsigned int height = image.GetHeight(); for (unsigned int y = 0; y < height; y++) { PixelType* p = reinterpret_cast<PixelType*>(image.GetRow(y)); for (unsigned int x = 0; x < width; x++, p++) { *p = static_cast<PixelType>(constant); } } } } template <typename PixelType> static void GetMinMaxValueInternal(PixelType& minValue, PixelType& maxValue, const ImageAccessor& source) { // Deal with the special case of empty image if (source.GetWidth() == 0 || source.GetHeight() == 0) { minValue = 0; maxValue = 0; return; } minValue = std::numeric_limits<PixelType>::max(); maxValue = std::numeric_limits<PixelType>::min(); const unsigned int height = source.GetHeight(); const unsigned int width = source.GetWidth(); for (unsigned int y = 0; y < height; y++) { const PixelType* p = reinterpret_cast<const PixelType*>(source.GetConstRow(y)); for (unsigned int x = 0; x < width; x++, p++) { if (*p < minValue) { minValue = *p; } if (*p > maxValue) { maxValue = *p; } } } } template <typename PixelType> static void AddConstantInternal(ImageAccessor& image, int64_t constant) { if (constant == 0) { return; } const int64_t minValue = std::numeric_limits<PixelType>::min(); const int64_t maxValue = std::numeric_limits<PixelType>::max(); const unsigned int width = image.GetWidth(); const unsigned int height = image.GetHeight(); for (unsigned int y = 0; y < height; y++) { PixelType* p = reinterpret_cast<PixelType*>(image.GetRow(y)); for (unsigned int x = 0; x < width; x++, p++) { int64_t v = static_cast<int64_t>(*p) + constant; if (v > maxValue) { *p = std::numeric_limits<PixelType>::max(); } else if (v < minValue) { *p = std::numeric_limits<PixelType>::min(); } else { *p = static_cast<PixelType>(v); } } } } template <typename PixelType, bool UseRound> static void MultiplyConstantInternal(ImageAccessor& image, float factor) { if (std::abs(factor - 1.0f) <= std::numeric_limits<float>::epsilon()) { return; } const int64_t minValue = std::numeric_limits<PixelType>::min(); const int64_t maxValue = std::numeric_limits<PixelType>::max(); const unsigned int width = image.GetWidth(); const unsigned int height = image.GetHeight(); for (unsigned int y = 0; y < height; y++) { PixelType* p = reinterpret_cast<PixelType*>(image.GetRow(y)); for (unsigned int x = 0; x < width; x++, p++) { int64_t v; if (UseRound) { // The "round" operation is very costly v = boost::math::llround(static_cast<float>(*p) * factor); } else { v = static_cast<int64_t>(static_cast<float>(*p) * factor); } if (v > maxValue) { *p = std::numeric_limits<PixelType>::max(); } else if (v < minValue) { *p = std::numeric_limits<PixelType>::min(); } else { *p = static_cast<PixelType>(v); } } } } template <typename PixelType, bool UseRound> static void ShiftScaleInternal(ImageAccessor& image, float offset, float scaling) { const float minFloatValue = static_cast<float>(std::numeric_limits<PixelType>::min()); const float maxFloatValue = static_cast<float>(std::numeric_limits<PixelType>::max()); const PixelType minPixelValue = std::numeric_limits<PixelType>::min(); const PixelType maxPixelValue = std::numeric_limits<PixelType>::max(); const unsigned int height = image.GetHeight(); const unsigned int width = image.GetWidth(); for (unsigned int y = 0; y < height; y++) { PixelType* p = reinterpret_cast<PixelType*>(image.GetRow(y)); for (unsigned int x = 0; x < width; x++, p++) { float v = (static_cast<float>(*p) + offset) * scaling; if (v > maxFloatValue) { *p = maxPixelValue; } else if (v < minFloatValue) { *p = minPixelValue; } else if (UseRound) { // The "round" operation is very costly *p = static_cast<PixelType>(boost::math::iround(v)); } else { *p = static_cast<PixelType>(v); } } } } void ImageProcessing::Copy(ImageAccessor& target, const ImageAccessor& source) { if (target.GetWidth() != source.GetWidth() || target.GetHeight() != source.GetHeight()) { throw OrthancException(ErrorCode_IncompatibleImageSize); } if (target.GetFormat() != source.GetFormat()) { throw OrthancException(ErrorCode_IncompatibleImageFormat); } unsigned int lineSize = source.GetBytesPerPixel() * source.GetWidth(); assert(source.GetPitch() >= lineSize && target.GetPitch() >= lineSize); for (unsigned int y = 0; y < source.GetHeight(); y++) { memcpy(target.GetRow(y), source.GetConstRow(y), lineSize); } } void ImageProcessing::Convert(ImageAccessor& target, const ImageAccessor& source) { if (target.GetWidth() != source.GetWidth() || target.GetHeight() != source.GetHeight()) { throw OrthancException(ErrorCode_IncompatibleImageSize); } const unsigned int width = source.GetWidth(); const unsigned int height = source.GetHeight(); if (source.GetFormat() == target.GetFormat()) { Copy(target, source); return; } if (target.GetFormat() == PixelFormat_Grayscale16 && source.GetFormat() == PixelFormat_Grayscale8) { ConvertInternal<uint16_t, uint8_t>(target, source); return; } if (target.GetFormat() == PixelFormat_SignedGrayscale16 && source.GetFormat() == PixelFormat_Grayscale8) { ConvertInternal<int16_t, uint8_t>(target, source); return; } if (target.GetFormat() == PixelFormat_Grayscale8 && source.GetFormat() == PixelFormat_Grayscale16) { ConvertInternal<uint8_t, uint16_t>(target, source); return; } if (target.GetFormat() == PixelFormat_SignedGrayscale16 && source.GetFormat() == PixelFormat_Grayscale16) { ConvertInternal<int16_t, uint16_t>(target, source); return; } if (target.GetFormat() == PixelFormat_Grayscale8 && source.GetFormat() == PixelFormat_SignedGrayscale16) { ConvertInternal<uint8_t, int16_t>(target, source); return; } if (target.GetFormat() == PixelFormat_Grayscale16 && source.GetFormat() == PixelFormat_SignedGrayscale16) { ConvertInternal<uint16_t, int16_t>(target, source); return; } if (target.GetFormat() == PixelFormat_Grayscale8 && source.GetFormat() == PixelFormat_RGB24) { ConvertColorToGrayscale<uint8_t>(target, source); return; } if (target.GetFormat() == PixelFormat_Grayscale16 && source.GetFormat() == PixelFormat_RGB24) { ConvertColorToGrayscale<uint16_t>(target, source); return; } if (target.GetFormat() == PixelFormat_SignedGrayscale16 && source.GetFormat() == PixelFormat_RGB24) { ConvertColorToGrayscale<int16_t>(target, source); return; } if (target.GetFormat() == PixelFormat_Float32 && source.GetFormat() == PixelFormat_Grayscale8) { ConvertGrayscaleToFloat<uint8_t>(target, source); return; } if (target.GetFormat() == PixelFormat_Float32 && source.GetFormat() == PixelFormat_Grayscale16) { ConvertGrayscaleToFloat<uint16_t>(target, source); return; } if (target.GetFormat() == PixelFormat_Float32 && source.GetFormat() == PixelFormat_Grayscale32) { ConvertGrayscaleToFloat<uint32_t>(target, source); return; } if (target.GetFormat() == PixelFormat_Float32 && source.GetFormat() == PixelFormat_SignedGrayscale16) { ConvertGrayscaleToFloat<int16_t>(target, source); return; } if (target.GetFormat() == PixelFormat_Grayscale8 && source.GetFormat() == PixelFormat_RGBA32) { for (unsigned int y = 0; y < height; y++) { const uint8_t* p = reinterpret_cast<const uint8_t*>(source.GetConstRow(y)); uint8_t* q = reinterpret_cast<uint8_t*>(target.GetRow(y)); for (unsigned int x = 0; x < width; x++, q++) { *q = static_cast<uint8_t>((2126 * static_cast<uint32_t>(p[0]) + 7152 * static_cast<uint32_t>(p[1]) + 0722 * static_cast<uint32_t>(p[2])) / 10000); p += 4; } } return; } if (target.GetFormat() == PixelFormat_Grayscale8 && source.GetFormat() == PixelFormat_BGRA32) { for (unsigned int y = 0; y < height; y++) { const uint8_t* p = reinterpret_cast<const uint8_t*>(source.GetConstRow(y)); uint8_t* q = reinterpret_cast<uint8_t*>(target.GetRow(y)); for (unsigned int x = 0; x < width; x++, q++) { *q = static_cast<uint8_t>((2126 * static_cast<uint32_t>(p[2]) + 7152 * static_cast<uint32_t>(p[1]) + 0722 * static_cast<uint32_t>(p[0])) / 10000); p += 4; } } return; } if (target.GetFormat() == PixelFormat_RGB24 && source.GetFormat() == PixelFormat_RGBA32) { for (unsigned int y = 0; y < height; y++) { const uint8_t* p = reinterpret_cast<const uint8_t*>(source.GetConstRow(y)); uint8_t* q = reinterpret_cast<uint8_t*>(target.GetRow(y)); for (unsigned int x = 0; x < width; x++) { q[0] = p[0]; q[1] = p[1]; q[2] = p[2]; p += 4; q += 3; } } return; } if (target.GetFormat() == PixelFormat_RGB24 && source.GetFormat() == PixelFormat_BGRA32) { for (unsigned int y = 0; y < height; y++) { const uint8_t* p = reinterpret_cast<const uint8_t*>(source.GetConstRow(y)); uint8_t* q = reinterpret_cast<uint8_t*>(target.GetRow(y)); for (unsigned int x = 0; x < width; x++) { q[0] = p[2]; q[1] = p[1]; q[2] = p[0]; p += 4; q += 3; } } return; } if (target.GetFormat() == PixelFormat_RGBA32 && source.GetFormat() == PixelFormat_RGB24) { for (unsigned int y = 0; y < height; y++) { const uint8_t* p = reinterpret_cast<const uint8_t*>(source.GetConstRow(y)); uint8_t* q = reinterpret_cast<uint8_t*>(target.GetRow(y)); for (unsigned int x = 0; x < width; x++) { q[0] = p[0]; q[1] = p[1]; q[2] = p[2]; q[3] = 255; // Set the alpha channel to full opacity p += 3; q += 4; } } return; } if (target.GetFormat() == PixelFormat_RGB24 && source.GetFormat() == PixelFormat_Grayscale8) { for (unsigned int y = 0; y < height; y++) { const uint8_t* p = reinterpret_cast<const uint8_t*>(source.GetConstRow(y)); uint8_t* q = reinterpret_cast<uint8_t*>(target.GetRow(y)); for (unsigned int x = 0; x < width; x++) { q[0] = *p; q[1] = *p; q[2] = *p; p += 1; q += 3; } } return; } if ((target.GetFormat() == PixelFormat_RGBA32 || target.GetFormat() == PixelFormat_BGRA32) && source.GetFormat() == PixelFormat_Grayscale8) { for (unsigned int y = 0; y < height; y++) { const uint8_t* p = reinterpret_cast<const uint8_t*>(source.GetConstRow(y)); uint8_t* q = reinterpret_cast<uint8_t*>(target.GetRow(y)); for (unsigned int x = 0; x < width; x++) { q[0] = *p; q[1] = *p; q[2] = *p; q[3] = 255; p += 1; q += 4; } } return; } if (target.GetFormat() == PixelFormat_BGRA32 && source.GetFormat() == PixelFormat_Grayscale16) { for (unsigned int y = 0; y < height; y++) { const uint16_t* p = reinterpret_cast<const uint16_t*>(source.GetConstRow(y)); uint8_t* q = reinterpret_cast<uint8_t*>(target.GetRow(y)); for (unsigned int x = 0; x < width; x++) { uint8_t value = (*p < 256 ? *p : 255); q[0] = value; q[1] = value; q[2] = value; q[3] = 255; p += 1; q += 4; } } return; } if (target.GetFormat() == PixelFormat_BGRA32 && source.GetFormat() == PixelFormat_SignedGrayscale16) { for (unsigned int y = 0; y < height; y++) { const int16_t* p = reinterpret_cast<const int16_t*>(source.GetConstRow(y)); uint8_t* q = reinterpret_cast<uint8_t*>(target.GetRow(y)); for (unsigned int x = 0; x < width; x++) { uint8_t value; if (*p < 0) { value = 0; } else if (*p > 255) { value = 255; } else { value = static_cast<uint8_t>(*p); } q[0] = value; q[1] = value; q[2] = value; q[3] = 255; p += 1; q += 4; } } return; } if (target.GetFormat() == PixelFormat_BGRA32 && source.GetFormat() == PixelFormat_RGB24) { for (unsigned int y = 0; y < height; y++) { const uint8_t* p = reinterpret_cast<const uint8_t*>(source.GetConstRow(y)); uint8_t* q = reinterpret_cast<uint8_t*>(target.GetRow(y)); for (unsigned int x = 0; x < width; x++) { q[0] = p[2]; q[1] = p[1]; q[2] = p[0]; q[3] = 255; p += 3; q += 4; } } return; } if (target.GetFormat() == PixelFormat_RGB24 && source.GetFormat() == PixelFormat_RGB48) { for (unsigned int y = 0; y < height; y++) { const uint16_t* p = reinterpret_cast<const uint16_t*>(source.GetConstRow(y)); uint8_t* q = reinterpret_cast<uint8_t*>(target.GetRow(y)); for (unsigned int x = 0; x < width; x++) { q[0] = p[0] >> 8; q[1] = p[1] >> 8; q[2] = p[2] >> 8; p += 3; q += 3; } } return; } if (target.GetFormat() == PixelFormat_Grayscale16 && source.GetFormat() == PixelFormat_Float32) { ConvertFloatToGrayscale<PixelFormat_Grayscale16>(target, source); return; } if (target.GetFormat() == PixelFormat_Grayscale8 && source.GetFormat() == PixelFormat_Float32) { ConvertFloatToGrayscale<PixelFormat_Grayscale8>(target, source); return; } throw OrthancException(ErrorCode_NotImplemented); } void ImageProcessing::Set(ImageAccessor& image, int64_t value) { switch (image.GetFormat()) { case PixelFormat_Grayscale8: SetInternal<uint8_t>(image, value); return; case PixelFormat_Grayscale16: SetInternal<uint16_t>(image, value); return; case PixelFormat_Grayscale32: SetInternal<uint32_t>(image, value); return; case PixelFormat_Grayscale64: SetInternal<uint64_t>(image, value); return; case PixelFormat_SignedGrayscale16: SetInternal<int16_t>(image, value); return; case PixelFormat_Float32: assert(sizeof(float) == 4); SetInternal<float>(image, value); return; default: throw OrthancException(ErrorCode_NotImplemented); } } void ImageProcessing::Set(ImageAccessor& image, uint8_t red, uint8_t green, uint8_t blue, uint8_t alpha) { uint8_t p[4]; unsigned int size; switch (image.GetFormat()) { case PixelFormat_RGBA32: p[0] = red; p[1] = green; p[2] = blue; p[3] = alpha; size = 4; break; case PixelFormat_BGRA32: p[0] = blue; p[1] = green; p[2] = red; p[3] = alpha; size = 4; break; case PixelFormat_RGB24: p[0] = red; p[1] = green; p[2] = blue; size = 3; break; default: throw OrthancException(ErrorCode_NotImplemented); } const unsigned int width = image.GetWidth(); const unsigned int height = image.GetHeight(); for (unsigned int y = 0; y < height; y++) { uint8_t* q = reinterpret_cast<uint8_t*>(image.GetRow(y)); for (unsigned int x = 0; x < width; x++) { for (unsigned int i = 0; i < size; i++) { q[i] = p[i]; } q += size; } } } void ImageProcessing::ShiftRight(ImageAccessor& image, unsigned int shift) { if (image.GetWidth() == 0 || image.GetHeight() == 0 || shift == 0) { // Nothing to do return; } throw OrthancException(ErrorCode_NotImplemented); } void ImageProcessing::GetMinMaxIntegerValue(int64_t& minValue, int64_t& maxValue, const ImageAccessor& image) { switch (image.GetFormat()) { case PixelFormat_Grayscale8: { uint8_t a, b; GetMinMaxValueInternal<uint8_t>(a, b, image); minValue = a; maxValue = b; break; } case PixelFormat_Grayscale16: { uint16_t a, b; GetMinMaxValueInternal<uint16_t>(a, b, image); minValue = a; maxValue = b; break; } case PixelFormat_Grayscale32: { uint32_t a, b; GetMinMaxValueInternal<uint32_t>(a, b, image); minValue = a; maxValue = b; break; } case PixelFormat_SignedGrayscale16: { int16_t a, b; GetMinMaxValueInternal<int16_t>(a, b, image); minValue = a; maxValue = b; break; } default: throw OrthancException(ErrorCode_NotImplemented); } } void ImageProcessing::GetMinMaxFloatValue(float& minValue, float& maxValue, const ImageAccessor& image) { switch (image.GetFormat()) { case PixelFormat_Float32: { assert(sizeof(float) == 4); float a, b; GetMinMaxValueInternal<float>(a, b, image); minValue = a; maxValue = b; break; } default: throw OrthancException(ErrorCode_NotImplemented); } } void ImageProcessing::AddConstant(ImageAccessor& image, int64_t value) { switch (image.GetFormat()) { case PixelFormat_Grayscale8: AddConstantInternal<uint8_t>(image, value); return; case PixelFormat_Grayscale16: AddConstantInternal<uint16_t>(image, value); return; case PixelFormat_SignedGrayscale16: AddConstantInternal<int16_t>(image, value); return; default: throw OrthancException(ErrorCode_NotImplemented); } } void ImageProcessing::MultiplyConstant(ImageAccessor& image, float factor, bool useRound) { switch (image.GetFormat()) { case PixelFormat_Grayscale8: if (useRound) { MultiplyConstantInternal<uint8_t, true>(image, factor); } else { MultiplyConstantInternal<uint8_t, false>(image, factor); } return; case PixelFormat_Grayscale16: if (useRound) { MultiplyConstantInternal<uint16_t, true>(image, factor); } else { MultiplyConstantInternal<uint16_t, false>(image, factor); } return; case PixelFormat_SignedGrayscale16: if (useRound) { MultiplyConstantInternal<int16_t, true>(image, factor); } else { MultiplyConstantInternal<int16_t, false>(image, factor); } return; default: throw OrthancException(ErrorCode_NotImplemented); } } void ImageProcessing::ShiftScale(ImageAccessor& image, float offset, float scaling, bool useRound) { switch (image.GetFormat()) { case PixelFormat_Grayscale8: if (useRound) { ShiftScaleInternal<uint8_t, true>(image, offset, scaling); } else { ShiftScaleInternal<uint8_t, false>(image, offset, scaling); } return; case PixelFormat_Grayscale16: if (useRound) { ShiftScaleInternal<uint16_t, true>(image, offset, scaling); } else { ShiftScaleInternal<uint16_t, false>(image, offset, scaling); } return; case PixelFormat_SignedGrayscale16: if (useRound) { ShiftScaleInternal<int16_t, true>(image, offset, scaling); } else { ShiftScaleInternal<int16_t, false>(image, offset, scaling); } return; default: throw OrthancException(ErrorCode_NotImplemented); } } void ImageProcessing::Invert(ImageAccessor& image, int64_t maxValue) { const unsigned int width = image.GetWidth(); const unsigned int height = image.GetHeight(); switch (image.GetFormat()) { case PixelFormat_Grayscale16: { uint16_t maxValueUint16 = (uint16_t)(std::min(maxValue, static_cast<int64_t>(std::numeric_limits<uint16_t>::max()))); for (unsigned int y = 0; y < height; y++) { uint16_t* p = reinterpret_cast<uint16_t*>(image.GetRow(y)); for (unsigned int x = 0; x < width; x++, p++) { *p = maxValueUint16 - (*p); } } return; } case PixelFormat_Grayscale8: { uint8_t maxValueUint8 = (uint8_t)(std::min(maxValue, static_cast<int64_t>(std::numeric_limits<uint8_t>::max()))); for (unsigned int y = 0; y < height; y++) { uint8_t* p = reinterpret_cast<uint8_t*>(image.GetRow(y)); for (unsigned int x = 0; x < width; x++, p++) { *p = maxValueUint8 - (*p); } } return; } default: throw OrthancException(ErrorCode_NotImplemented); } } void ImageProcessing::Invert(ImageAccessor& image) { switch (image.GetFormat()) { case PixelFormat_Grayscale8: return Invert(image, 255); default: throw OrthancException(ErrorCode_NotImplemented); // you should use the Invert(image, maxValue) overload } } namespace { template <Orthanc::PixelFormat Format> class BresenhamPixelWriter { private: typedef typename PixelTraits<Format>::PixelType PixelType; Orthanc::ImageAccessor& image_; PixelType value_; void PlotLineLow(int x0, int y0, int x1, int y1) { int dx = x1 - x0; int dy = y1 - y0; int yi = 1; if (dy < 0) { yi = -1; dy = -dy; } int d = 2 * dy - dx; int y = y0; for (int x = x0; x <= x1; x++) { Write(x, y); if (d > 0) { y = y + yi; d = d - 2 * dx; } d = d + 2*dy; } } void PlotLineHigh(int x0, int y0, int x1, int y1) { int dx = x1 - x0; int dy = y1 - y0; int xi = 1; if (dx < 0) { xi = -1; dx = -dx; } int d = 2 * dx - dy; int x = x0; for (int y = y0; y <= y1; y++) { Write(x, y); if (d > 0) { x = x + xi; d = d - 2 * dy; } d = d + 2 * dx; } } public: BresenhamPixelWriter(Orthanc::ImageAccessor& image, int64_t value) : image_(image), value_(PixelTraits<Format>::IntegerToPixel(value)) { } BresenhamPixelWriter(Orthanc::ImageAccessor& image, const PixelType& value) : image_(image), value_(value) { } void Write(int x, int y) { if (x >= 0 && y >= 0 && static_cast<unsigned int>(x) < image_.GetWidth() && static_cast<unsigned int>(y) < image_.GetHeight()) { PixelType* p = reinterpret_cast<PixelType*>(image_.GetRow(y)); p[x] = value_; } } void DrawSegment(int x0, int y0, int x1, int y1) { // This is an implementation of Bresenham's line algorithm // https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm#All_cases if (abs(y1 - y0) < abs(x1 - x0)) { if (x0 > x1) { PlotLineLow(x1, y1, x0, y0); } else { PlotLineLow(x0, y0, x1, y1); } } else { if (y0 > y1) { PlotLineHigh(x1, y1, x0, y0); } else { PlotLineHigh(x0, y0, x1, y1); } } } }; } void ImageProcessing::DrawLineSegment(ImageAccessor& image, int x0, int y0, int x1, int y1, int64_t value) { switch (image.GetFormat()) { case Orthanc::PixelFormat_Grayscale8: { BresenhamPixelWriter<Orthanc::PixelFormat_Grayscale8> writer(image, value); writer.DrawSegment(x0, y0, x1, y1); break; } case Orthanc::PixelFormat_Grayscale16: { BresenhamPixelWriter<Orthanc::PixelFormat_Grayscale16> writer(image, value); writer.DrawSegment(x0, y0, x1, y1); break; } case Orthanc::PixelFormat_SignedGrayscale16: { BresenhamPixelWriter<Orthanc::PixelFormat_SignedGrayscale16> writer(image, value); writer.DrawSegment(x0, y0, x1, y1); break; } default: throw Orthanc::OrthancException(Orthanc::ErrorCode_NotImplemented); } } void ImageProcessing::DrawLineSegment(ImageAccessor& image, int x0, int y0, int x1, int y1, uint8_t red, uint8_t green, uint8_t blue, uint8_t alpha) { switch (image.GetFormat()) { case Orthanc::PixelFormat_BGRA32: { PixelTraits<Orthanc::PixelFormat_BGRA32>::PixelType pixel; pixel.red_ = red; pixel.green_ = green; pixel.blue_ = blue; pixel.alpha_ = alpha; BresenhamPixelWriter<Orthanc::PixelFormat_BGRA32> writer(image, pixel); writer.DrawSegment(x0, y0, x1, y1); break; } case Orthanc::PixelFormat_RGBA32: { PixelTraits<Orthanc::PixelFormat_RGBA32>::PixelType pixel; pixel.red_ = red; pixel.green_ = green; pixel.blue_ = blue; pixel.alpha_ = alpha; BresenhamPixelWriter<Orthanc::PixelFormat_RGBA32> writer(image, pixel); writer.DrawSegment(x0, y0, x1, y1); break; } case Orthanc::PixelFormat_RGB24: { PixelTraits<Orthanc::PixelFormat_RGB24>::PixelType pixel; pixel.red_ = red; pixel.green_ = green; pixel.blue_ = blue; BresenhamPixelWriter<Orthanc::PixelFormat_RGB24> writer(image, pixel); writer.DrawSegment(x0, y0, x1, y1); break; } default: throw Orthanc::OrthancException(Orthanc::ErrorCode_NotImplemented); } } void ComputePolygonExtent(int32_t& left, int32_t& right, int32_t& top, int32_t& bottom, const std::vector<ImageProcessing::ImagePoint>& points) { left = std::numeric_limits<int32_t>::max(); right = std::numeric_limits<int32_t>::min(); top = std::numeric_limits<int32_t>::max(); bottom = std::numeric_limits<int32_t>::min(); for (size_t i = 0; i < points.size(); i++) { const ImageProcessing::ImagePoint& p = points[i]; left = std::min(p.GetX(), left); right = std::max(p.GetX(), right); bottom = std::max(p.GetY(), bottom); top = std::min(p.GetY(), top); } } template <PixelFormat TargetFormat> void FillPolygon_(ImageAccessor& image, const std::vector<ImageProcessing::ImagePoint>& points, int64_t value_) { typedef typename PixelTraits<TargetFormat>::PixelType TargetType; TargetType value = PixelTraits<TargetFormat>::IntegerToPixel(value_); int32_t left; int32_t right; int32_t top; int32_t bottom; ComputePolygonExtent(left, right, top, bottom, points); // from http://alienryderflex.com/polygon_fill/ // convert all "corner" points to double only once std::vector<double> cpx; std::vector<double> cpy; size_t cpSize = points.size(); for (size_t i = 0; i < points.size(); i++) { cpx.push_back((double)points[i].GetX()); cpy.push_back((double)points[i].GetY()); } std::vector<int32_t> nodeX; nodeX.resize(cpSize); int nodes, pixelX, pixelY, i, j, swap ; // Loop through the rows of the image. for (pixelY = top; pixelY < bottom; pixelY++) { double y = (double)pixelY; // Build a list of nodes. nodes = 0; j = static_cast<int>(cpSize) - 1; for (i = 0; i < static_cast<int>(cpSize); i++) { if ((cpy[i] < y && cpy[j] >= y) || (cpy[j] < y && cpy[i] >= y)) { nodeX[nodes++] = (int32_t)(cpx[i] + (y - cpy[i])/(cpy[j] - cpy[i]) * (cpx[j] - cpx[i])); } j=i; } // Sort the nodes, via a simple “Bubble” sort. i=0; while (i < nodes-1) { if (nodeX[i] > nodeX[i+1]) { swap = nodeX[i]; nodeX[i] = nodeX[i+1]; nodeX[i+1] = swap; if (i > 0) { i--; } } else { i++; } } TargetType* row = reinterpret_cast<TargetType*>(image.GetRow(pixelY)); // Fill the pixels between node pairs. for (i=0; i<nodes; i+=2) { if (nodeX[i] >= right) break; if (nodeX[i+1] >= left) { if (nodeX[i]< left) { nodeX[i] = left; } if (nodeX[i+1] > right) { nodeX[i+1] = right; } for (pixelX = nodeX[i]; pixelX <= nodeX[i+1]; pixelX++) { *(row + pixelX) = value; } } } } } void ImageProcessing::FillPolygon(ImageAccessor& image, const std::vector<ImagePoint>& points, int64_t value) { switch (image.GetFormat()) { case Orthanc::PixelFormat_Grayscale8: { FillPolygon_<Orthanc::PixelFormat_Grayscale8>(image, points, value); break; } case Orthanc::PixelFormat_Grayscale16: { FillPolygon_<Orthanc::PixelFormat_Grayscale16>(image, points, value); break; } case Orthanc::PixelFormat_SignedGrayscale16: { FillPolygon_<Orthanc::PixelFormat_SignedGrayscale16>(image, points, value); break; } default: throw Orthanc::OrthancException(Orthanc::ErrorCode_NotImplemented); } } }