Mercurial > hg > orthanc-wsi
view Framework/ColorSpaces.cpp @ 358:9e4dcbb578e3
handling of background color depending on photometric interpretation
author | Sebastien Jodogne <s.jodogne@gmail.com> |
---|---|
date | Fri, 20 Dec 2024 15:28:19 +0100 |
parents | c42083d50ddf |
children |
line wrap: on
line source
/** * Orthanc - A Lightweight, RESTful DICOM Store * Copyright (C) 2012-2016 Sebastien Jodogne, Medical Physics * Department, University Hospital of Liege, Belgium * Copyright (C) 2017-2023 Osimis S.A., Belgium * Copyright (C) 2024-2024 Orthanc Team SRL, Belgium * Copyright (C) 2021-2024 Sebastien Jodogne, ICTEAM UCLouvain, Belgium * * This program is free software: you can redistribute it and/or * modify it under the terms of the GNU Affero General Public License * as published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. **/ #include "ColorSpaces.h" #include <SerializationToolbox.h> #include <Toolbox.h> #include <boost/math/special_functions/round.hpp> namespace OrthancWSI { RGBColor::RGBColor(const sRGBColor& srgb) { if (srgb.GetR() < 0) { r_ = 0; } else if (srgb.GetR() >= 1) { r_ = 255; } else { r_ = boost::math::iround(srgb.GetR() * 255.0f); } if (srgb.GetG() < 0) { g_ = 0; } else if (srgb.GetG() >= 1) { g_ = 255; } else { g_ = boost::math::iround(srgb.GetG() * 255.0f); } if (srgb.GetB() < 0) { b_ = 0; } else if (srgb.GetB() >= 1) { b_ = 255; } else { b_ = boost::math::iround(srgb.GetB() * 255.0f); } } sRGBColor::sRGBColor(const RGBColor& rgb) { r_ = static_cast<float>(rgb.GetR()) / 255.0f; g_ = static_cast<float>(rgb.GetG()) / 255.0f; b_ = static_cast<float>(rgb.GetB()) / 255.0f; } static float ApplyGammaXYZ(float value) { // https://www.image-engineering.de/library/technotes/958-how-to-convert-between-srgb-and-ciexyz if (value <= 0.0031308f) { return value * 12.92f; } else { return 1.055f * powf(value, 1.0f / 2.4f) - 0.055f; } } sRGBColor::sRGBColor(const XYZColor& xyz) { // https://en.wikipedia.org/wiki/SRGB#From_CIE_XYZ_to_sRGB // https://www.image-engineering.de/library/technotes/958-how-to-convert-between-srgb-and-ciexyz const float sr = 3.2404542f * xyz.GetX() - 1.5371385f * xyz.GetY() - 0.4985314f * xyz.GetZ(); const float sg = -0.9692660f * xyz.GetX() + 1.8760108f * xyz.GetY() + 0.0415560f * xyz.GetZ(); const float sb = 0.0556434f * xyz.GetX() - 0.2040259f * xyz.GetY() + 1.0572252f * xyz.GetZ(); r_ = ApplyGammaXYZ(sr); g_ = ApplyGammaXYZ(sg); b_ = ApplyGammaXYZ(sb); } static float LinearizeXYZ(float value) { // https://www.image-engineering.de/library/technotes/958-how-to-convert-between-srgb-and-ciexyz if (value <= 0.04045f) { return value / 12.92f; } else { return powf((value + 0.055f) / 1.055f, 2.4f); } } XYZColor::XYZColor(const sRGBColor& srgb) { // https://en.wikipedia.org/wiki/SRGB#From_sRGB_to_CIE_XYZ // https://www.image-engineering.de/library/technotes/958-how-to-convert-between-srgb-and-ciexyz const float linearizedR = LinearizeXYZ(srgb.GetR()); const float linearizedG = LinearizeXYZ(srgb.GetG()); const float linearizedB = LinearizeXYZ(srgb.GetB()); x_ = 0.4124564f * linearizedR + 0.3575761f * linearizedG + 0.1804375f * linearizedB; y_ = 0.2126729f * linearizedR + 0.7151522f * linearizedG + 0.0721750f * linearizedB; z_ = 0.0193339f * linearizedR + 0.1191920f * linearizedG + 0.9503041f * linearizedB; } static const float LAB_DELTA = 6.0f / 29.0f; static float LABf_inv(float t) { if (t > LAB_DELTA) { return powf(t, 3.0f); } else { return 3.0f * LAB_DELTA * LAB_DELTA * (t - 4.0f / 29.0f); } } // Those correspond to Standard Illuminant D65 // https://en.wikipedia.org/wiki/CIELAB_color_space#From_CIEXYZ_to_CIELAB static const float X_N = 95.0489f; static const float Y_N = 100.0f; static const float Z_N = 108.8840f; XYZColor::XYZColor(const LABColor& lab) { // https://en.wikipedia.org/wiki/CIELAB_color_space#From_CIELAB_to_CIEXYZ const float shared = (lab.GetL() + 16.0f) / 116.0f; x_ = X_N * LABf_inv(shared + lab.GetA() / 500.0f) / 100.0f; y_ = Y_N * LABf_inv(shared) / 100.0f; z_ = Z_N * LABf_inv(shared - lab.GetB() / 200.0f) / 100.0f; } static float LABf(float t) { if (t > powf(LAB_DELTA, 3.0f)) { return powf(t, 1.0f / 3.0f); } else { return t / 3.0f * powf(LAB_DELTA, -2.0f) + 4.0f / 29.0f; } } LABColor::LABColor(const XYZColor& xyz) { // https://en.wikipedia.org/wiki/CIELAB_color_space#From_CIEXYZ_to_CIELAB const float fx = LABf(xyz.GetX() * 100.0f / X_N); const float fy = LABf(xyz.GetY() * 100.0f / Y_N); const float fz = LABf(xyz.GetZ() * 100.0f / Z_N); l_ = 116.0f * fy - 16.0f; a_ = 500.0f * (fx - fy); b_ = 200.0f * (fy - fz); } static uint16_t EncodeUint16(float value, float minValue, float maxValue) { if (value <= minValue) { return 0; } else if (value >= maxValue) { return 0xffff; } else { float lambda = (value - minValue) / (maxValue - minValue); assert(lambda >= 0 && lambda <= 1); return static_cast<uint16_t>(boost::math::iround(lambda * static_cast<float>(0xffff))); } } void LABColor::EncodeDicomRecommendedAbsentPixelCIELab(uint16_t target[3]) const { /** * "An L value linearly scaled to 16 bits, such that 0x0000 * corresponds to an L of 0.0, and 0xFFFF corresponds to an L of * 100.0." **/ target[0] = EncodeUint16(GetL(), 0.0f, 100.0f); /** * "An a* then a b* value, each linearly scaled to 16 bits and * offset to an unsigned range, such that 0x0000 corresponds to an * a* or b* of -128.0, 0x8080 corresponds to an a* or b* of 0.0 * and 0xFFFF corresponds to an a* or b* of 127.0" **/ target[1] = EncodeUint16(GetA(), -128.0f, 127.0f); target[2] = EncodeUint16(GetB(), -128.0f, 127.0f); } LABColor LABColor::DecodeDicomRecommendedAbsentPixelCIELab(uint16_t l, uint16_t a, uint16_t b) { return LABColor(static_cast<float>(l) / static_cast<float>(0xffff) * 100.0f, -128.0f + static_cast<float>(a) / static_cast<float>(0xffff) * 255.0f, -128.0f + static_cast<float>(b) / static_cast<float>(0xffff) * 255.0f); } bool LABColor::DecodeDicomRecommendedAbsentPixelCIELab(LABColor& target, const std::string& tag) { std::vector<std::string> channels; Orthanc::Toolbox::TokenizeString(channels, tag, '\\'); unsigned int l, a, b; if (channels.size() == 3 && Orthanc::SerializationToolbox::ParseUnsignedInteger32(l, channels[0]) && Orthanc::SerializationToolbox::ParseUnsignedInteger32(a, channels[1]) && Orthanc::SerializationToolbox::ParseUnsignedInteger32(b, channels[2]) && l <= 0xffffu && a <= 0xffffu && b <= 0xffffu) { target = LABColor::DecodeDicomRecommendedAbsentPixelCIELab(l, a, b); return true; } else { return false; } } }