Mercurial > hg > orthanc-stone
changeset 1952:a1e0aae9c17f deep-learning
support interruption of deep learning
author | Sebastien Jodogne <s.jodogne@gmail.com> |
---|---|
date | Tue, 16 Aug 2022 13:49:52 +0200 |
parents | 060d61913e39 |
children | 0661115af939 |
files | Applications/StoneWebViewer/WebAssembly/StoneWebViewer.cpp |
diffstat | 1 files changed, 154 insertions(+), 97 deletions(-) [+] |
line wrap: on
line diff
--- a/Applications/StoneWebViewer/WebAssembly/StoneWebViewer.cpp Fri Aug 12 21:49:37 2022 +0200 +++ b/Applications/StoneWebViewer/WebAssembly/StoneWebViewer.cpp Tue Aug 16 13:49:52 2022 +0200 @@ -3668,73 +3668,22 @@ #include <emscripten/fetch.h> #include "deep-learning/WebAssembly/Worker.pb.h" -static void SendRequestToWebWorker(const OrthancStone::Messages::Request& request); - +enum DeepLearningState +{ + DeepLearningState_Waiting, + DeepLearningState_Pending, + DeepLearningState_Running +}; + +static DeepLearningState deepLearningState_ = DeepLearningState_Waiting; +static worker_handle deepLearningWorker_; +static std::string deepLearningPendingSopInstanceUid_; +static unsigned int deepLearningPendingFrameNumber_; + +// Forward declaration static void DeepLearningCallback(char* data, int size, - void* payload) -{ - OrthancStone::Messages::Response response; - if (response.ParseFromArray(data, size)) - { - switch (response.type()) - { - case OrthancStone::Messages::ResponseType::INITIALIZED: - DISPATCH_JAVASCRIPT_EVENT("DeepLearningInitialized"); - break; - - case OrthancStone::Messages::ResponseType::PARSED_MODEL: - LOG(WARNING) << "Number of steps in the model: " << response.parse_model().number_of_steps(); - DISPATCH_JAVASCRIPT_EVENT("DeepLearningModelReady"); - break; - - case OrthancStone::Messages::ResponseType::LOADED_IMAGE: - { - OrthancStone::Messages::Request request; - request.set_type(OrthancStone::Messages::RequestType::EXECUTE_STEP); - SendRequestToWebWorker(request); - break; - } - - case OrthancStone::Messages::ResponseType::STEP_DONE: - { - EM_ASM({ - const customEvent = document.createEvent("CustomEvent"); - customEvent.initCustomEvent("DeepLearningStep", false, false, - { "progress" : $0 }); - window.dispatchEvent(customEvent); - }, - response.step().progress() - ); - - if (response.step().done()) - { - LOG(WARNING) << "SUCCESS! Mask: " << response.step().output().width() << "x" - << response.step().output().height() << " for frame " - << response.step().output().sop_instance_uid() << " / " - << response.step().output().frame_number(); - } - else - { - OrthancStone::Messages::Request request; - request.set_type(OrthancStone::Messages::RequestType::EXECUTE_STEP); - SendRequestToWebWorker(request); - } - - break; - } - - default: - LOG(ERROR) << "Unsupported response type from the deep learning worker"; - } - } - else - { - LOG(ERROR) << "Bad response received from the deep learning worker"; - } -} - -static worker_handle deepLearningWorker_; + void* payload); static void SendRequestToWebWorker(const OrthancStone::Messages::Request& request) { @@ -3751,6 +3700,145 @@ } } +static void DeepLearningSchedule(const std::string& sopInstanceUid, + unsigned int frameNumber) +{ + if (deepLearningState_ == DeepLearningState_Waiting) + { + LOG(WARNING) << "Starting deep learning on: " << sopInstanceUid << " / " << frameNumber; + + FramesCache::Accessor accessor(*framesCache_, sopInstanceUid, frameNumber); + if (accessor.IsValid() && + accessor.GetImage().GetFormat() == Orthanc::PixelFormat_Float32) + { + const Orthanc::ImageAccessor& image = accessor.GetImage(); + + OrthancStone::Messages::Request request; + request.set_type(OrthancStone::Messages::RequestType::LOAD_IMAGE); + request.mutable_load_image()->set_sop_instance_uid(sopInstanceUid); + request.mutable_load_image()->set_frame_number(frameNumber); + request.mutable_load_image()->set_width(image.GetWidth()); + request.mutable_load_image()->set_height(image.GetHeight()); + + const unsigned int height = image.GetHeight(); + const unsigned int width = image.GetWidth(); + for (unsigned int y = 0; y < height; y++) + { + const float* p = reinterpret_cast<const float*>(image.GetConstRow(y)); + for (unsigned int x = 0; x < width; x++, p++) + { + request.mutable_load_image()->mutable_values()->Add(*p); + } + } + + deepLearningState_ = DeepLearningState_Running; + SendRequestToWebWorker(request); + } + else + { + LOG(ERROR) << "Cannot access the frame content, maybe a color image?"; + + EM_ASM({ + const customEvent = document.createEvent("CustomEvent"); + customEvent.initCustomEvent("DeepLearningStep", false, false, + { "progress" : "0" }); + window.dispatchEvent(customEvent); + }); + } + } + else + { + deepLearningState_ = DeepLearningState_Pending; + deepLearningPendingSopInstanceUid_ = sopInstanceUid; + deepLearningPendingFrameNumber_ = frameNumber; + } +} + +static void DeepLearningNextStep() +{ + switch (deepLearningState_) + { + case DeepLearningState_Pending: + deepLearningState_ = DeepLearningState_Waiting; + DeepLearningSchedule(deepLearningPendingSopInstanceUid_, deepLearningPendingFrameNumber_); + break; + + case DeepLearningState_Running: + { + OrthancStone::Messages::Request request; + request.set_type(OrthancStone::Messages::RequestType::EXECUTE_STEP); + SendRequestToWebWorker(request); + break; + } + + default: + throw Orthanc::OrthancException(Orthanc::ErrorCode_InternalError, "Bad state for deep learning"); + } +} + +static void DeepLearningCallback(char* data, + int size, + void* payload) +{ + try + { + OrthancStone::Messages::Response response; + if (response.ParseFromArray(data, size)) + { + switch (response.type()) + { + case OrthancStone::Messages::ResponseType::INITIALIZED: + DISPATCH_JAVASCRIPT_EVENT("DeepLearningInitialized"); + break; + + case OrthancStone::Messages::ResponseType::PARSED_MODEL: + LOG(WARNING) << "Number of steps in the model: " << response.parse_model().number_of_steps(); + DISPATCH_JAVASCRIPT_EVENT("DeepLearningModelReady"); + break; + + case OrthancStone::Messages::ResponseType::LOADED_IMAGE: + DeepLearningNextStep(); + break; + + case OrthancStone::Messages::ResponseType::STEP_DONE: + { + EM_ASM({ + const customEvent = document.createEvent("CustomEvent"); + customEvent.initCustomEvent("DeepLearningStep", false, false, + { "progress" : $0 }); + window.dispatchEvent(customEvent); + }, + response.step().progress() + ); + + if (response.step().done()) + { + deepLearningState_ = DeepLearningState_Waiting; + LOG(WARNING) << "SUCCESS! Mask: " << response.step().output().width() << "x" + << response.step().output().height() << " for frame " + << response.step().output().sop_instance_uid() << " / " + << response.step().output().frame_number(); + } + else + { + DeepLearningNextStep(); + } + + break; + } + + default: + LOG(ERROR) << "Unsupported response type from the deep learning worker"; + } + } + else + { + LOG(ERROR) << "Bad response received from the deep learning worker"; + } + } + EXTERN_CATCH_EXCEPTIONS; +} + static void DeepLearningModelLoaded(emscripten_fetch_t *fetch) { try @@ -3819,38 +3907,7 @@ unsigned int frameNumber; if (viewport->GetCurrentFrame(sopInstanceUid, frameNumber)) { - LOG(ERROR) << "OK: " << sopInstanceUid << " / " << frameNumber; - - FramesCache::Accessor accessor(*framesCache_, sopInstanceUid, frameNumber); - if (accessor.IsValid() && - accessor.GetImage().GetFormat() == Orthanc::PixelFormat_Float32) - { - const Orthanc::ImageAccessor& image = accessor.GetImage(); - - OrthancStone::Messages::Request request; - request.set_type(OrthancStone::Messages::RequestType::LOAD_IMAGE); - request.mutable_load_image()->set_sop_instance_uid(sopInstanceUid); - request.mutable_load_image()->set_frame_number(frameNumber); - request.mutable_load_image()->set_width(image.GetWidth()); - request.mutable_load_image()->set_height(image.GetHeight()); - - const unsigned int height = image.GetHeight(); - const unsigned int width = image.GetWidth(); - for (unsigned int y = 0; y < height; y++) - { - const float* p = reinterpret_cast<const float*>(image.GetConstRow(y)); - for (unsigned int x = 0; x < width; x++, p++) - { - request.mutable_load_image()->mutable_values()->Add(*p); - } - } - - SendRequestToWebWorker(request); - } - else - { - LOG(WARNING) << "Cannot access graylevel frame"; - } + DeepLearningSchedule(sopInstanceUid, frameNumber); } else {