Mercurial > hg > orthanc-stone
view Framework/Radiography/RadiographyMaskLayer.cpp @ 487:e4febcef669e am-touch-events
fix warning
author | am@osimis.io |
---|---|
date | Fri, 15 Feb 2019 18:43:41 +0100 |
parents | 159a465e27bd |
children | aede9b042cb7 |
line wrap: on
line source
/** * Stone of Orthanc * Copyright (C) 2012-2016 Sebastien Jodogne, Medical Physics * Department, University Hospital of Liege, Belgium * Copyright (C) 2017-2018 Osimis S.A., Belgium * * This program is free software: you can redistribute it and/or * modify it under the terms of the GNU Affero General Public License * as published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. **/ #include "RadiographyMaskLayer.h" #include "RadiographyDicomLayer.h" #include "RadiographyScene.h" #include "Core/Images/Image.h" #include "Core/Images/ImageProcessing.h" #include <Core/OrthancException.h> namespace OrthancStone { const unsigned char IN_MASK_VALUE = 0x00; const unsigned char OUT_MASK_VALUE = 0xFF; const AffineTransform2D& RadiographyMaskLayer::GetTransform() const { return dicomLayer_.GetTransform(); } const AffineTransform2D& RadiographyMaskLayer::GetTransformInverse() const { return dicomLayer_.GetTransformInverse(); } bool RadiographyMaskLayer::GetPixel(unsigned int& imageX, unsigned int& imageY, double sceneX, double sceneY) const { return dicomLayer_.GetPixel(imageX, imageY, sceneX, sceneY); } void ComputeMaskExtent(unsigned int& left, unsigned int& right, unsigned int& top, unsigned int& bottom, const std::vector<MaskPoint>& corners) { left = std::numeric_limits<unsigned int>::max(); right = std::numeric_limits<unsigned int>::min(); top = std::numeric_limits<unsigned int>::max(); bottom = std::numeric_limits<unsigned int>::min(); for (size_t i = 0; i < corners.size(); i++) { const MaskPoint& p = corners[i]; left = std::min(p.x, left); right = std::max(p.x, right); bottom = std::max(p.y, bottom); top = std::min(p.y, top); } } std::string RadiographyMaskLayer::GetInstanceId() const { return dicomLayer_.GetInstanceId(); } void RadiographyMaskLayer::SetCorner(const MaskPoint& corner, size_t index) { if (index < corners_.size()) corners_[index] = corner; else corners_.push_back(corner); invalidated_ = true; } void RadiographyMaskLayer::SetCorners(const std::vector<MaskPoint>& corners) { corners_ = corners; invalidated_ = true; } void RadiographyMaskLayer::Render(Orthanc::ImageAccessor& buffer, const AffineTransform2D& viewTransform, ImageInterpolation interpolation) const { if (dicomLayer_.GetWidth() == 0) // nothing to do if the DICOM layer is not displayed (or not loaded) return; if (invalidated_) { mask_.reset(new Orthanc::Image(Orthanc::PixelFormat_Grayscale8, dicomLayer_.GetWidth(), dicomLayer_.GetHeight(), false)); DrawMask(); invalidated_ = false; } {// rendering if (buffer.GetFormat() != Orthanc::PixelFormat_Float32) { throw Orthanc::OrthancException(Orthanc::ErrorCode_IncompatibleImageFormat); } unsigned int cropX, cropY, cropWidth, cropHeight; dicomLayer_.GetCrop(cropX, cropY, cropWidth, cropHeight); const AffineTransform2D t = AffineTransform2D::Combine( viewTransform, dicomLayer_.GetTransform(), AffineTransform2D::CreateOffset(cropX, cropY)); Orthanc::ImageAccessor cropped; mask_->GetRegion(cropped, cropX, cropY, cropWidth, cropHeight); Orthanc::Image tmp(Orthanc::PixelFormat_Grayscale8, buffer.GetWidth(), buffer.GetHeight(), false); t.Apply(tmp, cropped, interpolation, true /* clear */); // Blit const unsigned int width = buffer.GetWidth(); const unsigned int height = buffer.GetHeight(); for (unsigned int y = 0; y < height; y++) { float *q = reinterpret_cast<float*>(buffer.GetRow(y)); const uint8_t *p = reinterpret_cast<uint8_t*>(tmp.GetRow(y)); for (unsigned int x = 0; x < width; x++, p++, q++) { if (*p == OUT_MASK_VALUE) *q = foreground_; // else keep the underlying pixel value } } } } void RadiographyMaskLayer::DrawMask() const { unsigned int left; unsigned int right; unsigned int top; unsigned int bottom; ComputeMaskExtent(left, right, top, bottom, corners_); // first fill the complete image Orthanc::ImageProcessing::Set(*mask_, OUT_MASK_VALUE); { // from http://alienryderflex.com/polygon_fill/ std::auto_ptr<int> raiiNodeX(new int(corners_.size())); // convert all control points to double only once std::vector<double> cpx; std::vector<double> cpy; int cpSize = corners_.size(); for (size_t i = 0; i < corners_.size(); i++) { cpx.push_back((double)corners_[i].x); cpy.push_back((double)corners_[i].y); } std::vector<int> nodeX; nodeX.resize(cpSize); int nodes, pixelX, pixelY, i, j, swap ; // Loop through the rows of the image. for (pixelY = (int)top; pixelY < (int)bottom; pixelY++) { double y = (double)pixelY; // Build a list of nodes. nodes = 0; j = cpSize - 1; for (i = 0; i < cpSize; i++) { if ((cpy[i] < y && cpy[j] >= y) || (cpy[j] < y && cpy[i] >= y)) { nodeX[nodes++]= (int)(cpx[i] + (y - cpy[i])/(cpy[j] - cpy[i]) *(cpx[j] - cpx[i])); } j=i; } // Sort the nodes, via a simple “Bubble” sort. i=0; while (i < nodes-1) { if (nodeX[i] > nodeX[i+1]) { swap = nodeX[i]; nodeX[i] = nodeX[i+1]; nodeX[i+1] = swap; if (i) i--; } else { i++; } } unsigned char* row = reinterpret_cast<unsigned char*>(mask_->GetRow(pixelY)); // Fill the pixels between node pairs. for (i=0; i<nodes; i+=2) { if (nodeX[i ]>=(int)right) break; if (nodeX[i+1]>= (int)left) { if (nodeX[i ]< (int)left ) nodeX[i ]=(int)left ; if (nodeX[i+1]> (int)right) nodeX[i+1]=(int)right; for (pixelX = nodeX[i]; pixelX <= nodeX[i+1]; pixelX++) { *(row + pixelX) = IN_MASK_VALUE; } } } } } } }