Mercurial > hg > orthanc-stone
view Framework/Toolbox/LinearAlgebra.h @ 611:e3f21a265be5
Added version directive to GLSL shader code + glew init function in sample code
AND commented-out glew init function in StoneInitialize
author | Benjamin Golinvaux <bgo@osimis.io> |
---|---|
date | Tue, 30 Apr 2019 16:07:48 +0200 |
parents | b70e9be013e4 |
children | 6af3099ed8da |
line wrap: on
line source
/** * Stone of Orthanc * Copyright (C) 2012-2016 Sebastien Jodogne, Medical Physics * Department, University Hospital of Liege, Belgium * Copyright (C) 2017-2019 Osimis S.A., Belgium * * This program is free software: you can redistribute it and/or * modify it under the terms of the GNU Affero General Public License * as published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. **/ #pragma once // Patch for ublas in Boost 1.64.0 // https://github.com/dealii/dealii/issues/4302 #include <boost/version.hpp> #if BOOST_VERSION >= 106300 // or 64, need to check # include <boost/serialization/array_wrapper.hpp> #endif #include <Core/DicomFormat/DicomMap.h> #include <boost/numeric/ublas/matrix.hpp> #include <boost/numeric/ublas/vector.hpp> namespace OrthancStone { typedef boost::numeric::ublas::matrix<double> Matrix; typedef boost::numeric::ublas::vector<double> Vector; namespace LinearAlgebra { void Print(const Vector& v); void Print(const Matrix& m); bool ParseVector(Vector& target, const std::string& s); bool ParseVector(Vector& target, const Orthanc::DicomMap& dataset, const Orthanc::DicomTag& tag); inline void AssignVector(Vector& v, double v1, double v2) { v.resize(2); v[0] = v1; v[1] = v2; } inline void AssignVector(Vector& v, double v1) { v.resize(1); v[0] = v1; } inline void AssignVector(Vector& v, double v1, double v2, double v3) { v.resize(3); v[0] = v1; v[1] = v2; v[2] = v3; } inline void AssignVector(Vector& v, double v1, double v2, double v3, double v4) { v.resize(4); v[0] = v1; v[1] = v2; v[2] = v3; v[3] = v4; } inline Vector CreateVector(double v1) { Vector v; AssignVector(v, v1); return v; } inline Vector CreateVector(double v1, double v2) { Vector v; AssignVector(v, v1, v2); return v; } inline Vector CreateVector(double v1, double v2, double v3) { Vector v; AssignVector(v, v1, v2, v3); return v; } inline Vector CreateVector(double v1, double v2, double v3, double v4) { Vector v; AssignVector(v, v1, v2, v3, v4); return v; } inline bool IsNear(double x, double y, double threshold) { return fabs(x - y) < threshold; } inline bool IsNear(double x, double y) { // As most input is read as single-precision numbers, we take the // epsilon machine for float32 into consideration to compare numbers return IsNear(x, y, 10.0 * std::numeric_limits<float>::epsilon()); } inline bool IsCloseToZero(double x) { return IsNear(x, 0.0); } void NormalizeVector(Vector& u); void CrossProduct(Vector& result, const Vector& u, const Vector& v); void FillMatrix(Matrix& target, size_t rows, size_t columns, const double values[]); void FillVector(Vector& target, size_t size, const double values[]); void Convert(Matrix& target, const Vector& source); inline Matrix Transpose(const Matrix& a) { return boost::numeric::ublas::trans(a); } inline Matrix IdentityMatrix(size_t size) { return boost::numeric::ublas::identity_matrix<double>(size); } inline Matrix ZeroMatrix(size_t size1, size_t size2) { return boost::numeric::ublas::zero_matrix<double>(size1, size2); } inline Matrix Product(const Matrix& a, const Matrix& b) { return boost::numeric::ublas::prod(a, b); } inline Vector Product(const Matrix& a, const Vector& b) { return boost::numeric::ublas::prod(a, b); } inline Matrix Product(const Matrix& a, const Matrix& b, const Matrix& c) { return Product(a, Product(b, c)); } inline Matrix Product(const Matrix& a, const Matrix& b, const Matrix& c, const Matrix& d) { return Product(a, Product(b, c, d)); } inline Matrix Product(const Matrix& a, const Matrix& b, const Matrix& c, const Matrix& d, const Matrix& e) { return Product(a, Product(b, c, d, e)); } inline Vector Product(const Matrix& a, const Matrix& b, const Vector& c) { return Product(Product(a, b), c); } inline Vector Product(const Matrix& a, const Matrix& b, const Matrix& c, const Vector& d) { return Product(Product(a, b, c), d); } double ComputeDeterminant(const Matrix& a); bool IsOrthogonalMatrix(const Matrix& q, double threshold); bool IsOrthogonalMatrix(const Matrix& q); bool IsRotationMatrix(const Matrix& r, double threshold); bool IsRotationMatrix(const Matrix& r); void InvertUpperTriangularMatrix(Matrix& output, const Matrix& k); /** * This function computes the RQ decomposition of a 3x3 matrix, * using Givens rotations. Reference: Algorithm A4.1 (page 579) of * "Multiple View Geometry in Computer Vision" (2nd edition). The * output matrix "Q" is a rotation matrix, and "R" is upper * triangular. **/ void RQDecomposition3x3(Matrix& r, Matrix& q, const Matrix& a); void InvertMatrix(Matrix& target, const Matrix& source); // This is the same as "InvertMatrix()", but without exception bool InvertMatrixUnsafe(Matrix& target, const Matrix& source); void CreateSkewSymmetric(Matrix& s, const Vector& v); Matrix InvertScalingTranslationMatrix(const Matrix& t); bool IsShearMatrix(const Matrix& shear); Matrix InvertShearMatrix(const Matrix& shear); }; }