Mercurial > hg > orthanc-stone
view OrthancStone/Sources/Scene2D/LookupTableTextureSceneLayer.cpp @ 1985:bb307007f8e2
improved interaction with rectangle probes
author | Sebastien Jodogne <s.jodogne@gmail.com> |
---|---|
date | Mon, 31 Oct 2022 15:01:09 +0100 |
parents | ed4831e08961 |
children | 07964689cb0b |
line wrap: on
line source
/** * Stone of Orthanc * Copyright (C) 2012-2016 Sebastien Jodogne, Medical Physics * Department, University Hospital of Liege, Belgium * Copyright (C) 2017-2022 Osimis S.A., Belgium * Copyright (C) 2021-2022 Sebastien Jodogne, ICTEAM UCLouvain, Belgium * * This program is free software: you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * as published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program. If not, see * <http://www.gnu.org/licenses/>. **/ #include "LookupTableTextureSceneLayer.h" #include <Images/Image.h> #include <Images/ImageProcessing.h> #include <Logging.h> #include <OrthancException.h> namespace OrthancStone { LookupTableTextureSceneLayer::LookupTableTextureSceneLayer(const Orthanc::ImageAccessor& texture) : applyLog_(false) { if (texture.GetFormat() == Orthanc::PixelFormat_Float32) { SetTexture(Orthanc::Image::Clone(texture)); } else { std::unique_ptr<Orthanc::ImageAccessor> t( new Orthanc::Image(Orthanc::PixelFormat_Float32, texture.GetWidth(), texture.GetHeight(), false)); Orthanc::ImageProcessing::Convert(*t, texture); SetTexture(t.release()); } SetLookupTableGrayscale(); // simple ramp between 0 and 255 SetRange(0, 1); } void LookupTableTextureSceneLayer::SetLookupTableGrayscale() { std::vector<uint8_t> rgb(3 * 256); for (size_t i = 0; i < 256; i++) { rgb[3 * i] = static_cast<uint8_t>(i); rgb[3 * i + 1] = static_cast<uint8_t>(i); rgb[3 * i + 2] = static_cast<uint8_t>(i); } SetLookupTableRgb(rgb); } void LookupTableTextureSceneLayer::SetLookupTableRgb(const std::vector<uint8_t>& lut) { if (lut.size() != 3 * 256) { throw Orthanc::OrthancException(Orthanc::ErrorCode_InternalError); } lut_.resize(4 * 256); for (size_t i = 0; i < 256; i++) { // Premultiplied alpha if (i == 0) { // Make zero transparent lut_[4 * i] = 0; // R lut_[4 * i + 1] = 0; // G lut_[4 * i + 2] = 0; // B lut_[4 * i + 3] = 0; // A } else { float a = static_cast<float>(i) / 255.0f; float r = static_cast<float>(lut[3 * i]) * a; float g = static_cast<float>(lut[3 * i + 1]) * a; float b = static_cast<float>(lut[3 * i + 2]) * a; lut_[4 * i] = static_cast<uint8_t>(std::floor(r)); lut_[4 * i + 1] = static_cast<uint8_t>(std::floor(g)); lut_[4 * i + 2] = static_cast<uint8_t>(std::floor(b)); lut_[4 * i + 3] = static_cast<uint8_t>(std::floor(a * 255.0f)); } } IncrementRevision(); } void LookupTableTextureSceneLayer::SetLookupTable(const std::vector<uint8_t>& lut) { if (lut.size() == 4 * 256) { lut_ = lut; IncrementRevision(); } else if (lut.size() == 3 * 256) { SetLookupTableRgb(lut); } else { throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange); } } void LookupTableTextureSceneLayer::SetRange(float minValue, float maxValue) { if (minValue > maxValue) { throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange); } else { minValue_ = minValue; maxValue_ = maxValue; IncrementRevision(); } } void LookupTableTextureSceneLayer::SetApplyLog(bool apply) { applyLog_ = apply; IncrementRevision(); } void LookupTableTextureSceneLayer::FitRange() { Orthanc::ImageProcessing::GetMinMaxFloatValue(minValue_, maxValue_, GetTexture()); assert(minValue_ <= maxValue_); // TODO: debug to be removed if (fabs(maxValue_ - minValue_) < 0.0001) { LOG(TRACE) << "LookupTableTextureSceneLayer::FitRange(): minValue_ = " << minValue_ << " maxValue_ = " << maxValue_; } IncrementRevision(); } ISceneLayer* LookupTableTextureSceneLayer::Clone() const { std::unique_ptr<LookupTableTextureSceneLayer> cloned (new LookupTableTextureSceneLayer(GetTexture())); // TODO: why is windowing_ not copied?????? cloned->CopyParameters(*this); cloned->minValue_ = minValue_; cloned->maxValue_ = maxValue_; cloned->lut_ = lut_; return cloned.release(); } // Templatized function to speed up computations, by avoiding // testing conditions on each pixel template <bool IsApplyLog, Orthanc::PixelFormat TargetFormat> static void RenderInternal(Orthanc::ImageAccessor& target, const Orthanc::ImageAccessor& source, float minValue, float slope, const std::vector<uint8_t>& lut) { static const float LOG_NORMALIZATION = 255.0f / log(1.0f + 255.0f); const unsigned int width = source.GetWidth(); const unsigned int height = source.GetHeight(); for (unsigned int y = 0; y < height; y++) { const float* p = reinterpret_cast<const float*>(source.GetConstRow(y)); uint8_t* q = reinterpret_cast<uint8_t*>(target.GetRow(y)); for (unsigned int x = 0; x < width; x++) { float v = (*p - minValue) * slope; if (v <= 0) { v = 0; } else if (v >= 255) { v = 255; } if (IsApplyLog) { // https://theailearner.com/2019/01/01/log-transformation/ v = LOG_NORMALIZATION * log(1.0f + static_cast<float>(v)); } assert(v >= 0.0f && v <= 255.0f); uint8_t vv = static_cast<uint8_t>(v); switch (TargetFormat) { case Orthanc::PixelFormat_BGRA32: // For Cairo surfaces q[0] = lut[4 * vv + 2]; // B q[1] = lut[4 * vv + 1]; // G q[2] = lut[4 * vv + 0]; // R q[3] = lut[4 * vv + 3]; // A break; case Orthanc::PixelFormat_RGBA32: // For OpenGL q[0] = lut[4 * vv + 0]; // R q[1] = lut[4 * vv + 1]; // G q[2] = lut[4 * vv + 2]; // B q[3] = lut[4 * vv + 3]; // A break; default: assert(0); } p++; q += 4; } } } void LookupTableTextureSceneLayer::Render(Orthanc::ImageAccessor& target) const { assert(sizeof(float) == 4); if (!HasTexture()) { throw Orthanc::OrthancException(Orthanc::ErrorCode_BadSequenceOfCalls); } const Orthanc::ImageAccessor& source = GetTexture(); if (source.GetFormat() != Orthanc::PixelFormat_Float32 || (target.GetFormat() != Orthanc::PixelFormat_RGBA32 && target.GetFormat() != Orthanc::PixelFormat_BGRA32)) { throw Orthanc::OrthancException(Orthanc::ErrorCode_IncompatibleImageFormat); } if (source.GetWidth() != target.GetWidth() || source.GetHeight() != target.GetHeight()) { throw Orthanc::OrthancException(Orthanc::ErrorCode_IncompatibleImageSize); } const float minValue = GetMinValue(); float slope; if (GetMinValue() >= GetMaxValue()) { slope = 0; } else { slope = 256.0f / (GetMaxValue() - GetMinValue()); } const std::vector<uint8_t>& lut = GetLookupTable(); if (lut.size() != 4 * 256) { throw Orthanc::OrthancException(Orthanc::ErrorCode_InternalError); } switch (target.GetFormat()) { case Orthanc::PixelFormat_RGBA32: if (applyLog_) { RenderInternal<true, Orthanc::PixelFormat_RGBA32>(target, source, minValue, slope, lut); } else { RenderInternal<false, Orthanc::PixelFormat_RGBA32>(target, source, minValue, slope, lut); } break; case Orthanc::PixelFormat_BGRA32: if (applyLog_) { RenderInternal<true, Orthanc::PixelFormat_BGRA32>(target, source, minValue, slope, lut); } else { RenderInternal<false, Orthanc::PixelFormat_BGRA32>(target, source, minValue, slope, lut); } break; default: throw Orthanc::OrthancException(Orthanc::ErrorCode_InternalError); } } }