view Framework/Volumes/ImageBuffer3D.cpp @ 430:b85f635f1eb5 am-vsol-upgrade

added serialization for RadiographyScene
author am@osimis.io
date Thu, 29 Nov 2018 15:11:19 +0100
parents 557c8ff1db5c
children b70e9be013e4
line wrap: on
line source

/**
 * Stone of Orthanc
 * Copyright (C) 2012-2016 Sebastien Jodogne, Medical Physics
 * Department, University Hospital of Liege, Belgium
 * Copyright (C) 2017-2018 Osimis S.A., Belgium
 *
 * This program is free software: you can redistribute it and/or
 * modify it under the terms of the GNU Affero General Public License
 * as published by the Free Software Foundation, either version 3 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 **/


#include "ImageBuffer3D.h"

#include <Core/Images/ImageProcessing.h>
#include <Core/Logging.h>
#include <Core/OrthancException.h>

#include <string.h>

namespace OrthancStone
{
  void ImageBuffer3D::GetAxialSliceAccessor(Orthanc::ImageAccessor& target,
                                            unsigned int slice,
                                            bool readOnly) const
  {
    if (slice >= depth_)
    {
      throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange);
    }

    if (readOnly)
    {
      target.AssignReadOnly(format_, width_, height_, image_.GetPitch(),
                            image_.GetConstRow(height_ * (depth_ - 1 - slice)));
    }
    else
    {
      target.AssignWritable(format_, width_, height_, image_.GetPitch(),
                            image_.GetRow(height_ * (depth_ - 1 - slice)));
    }
  }


  void ImageBuffer3D::GetCoronalSliceAccessor(Orthanc::ImageAccessor& target,
                                              unsigned int slice,
                                              bool readOnly) const
  {
    if (slice >= height_)
    {
      throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange);
    }

    if (readOnly)
    {
      target.AssignReadOnly(format_, width_, depth_, image_.GetPitch() * height_,
                            image_.GetConstRow(slice));
    }
    else
    {
      target.AssignWritable(format_, width_, depth_, image_.GetPitch() * height_,
                            image_.GetRow(slice));
    }
  }


  Orthanc::Image*  ImageBuffer3D::ExtractSagittalSlice(unsigned int slice) const
  {
    if (slice >= width_)
    {
      throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange);
    }

    std::auto_ptr<Orthanc::Image> result(new Orthanc::Image(format_, height_, depth_, false));

    unsigned int bytesPerPixel = Orthanc::GetBytesPerPixel(format_);

    for (unsigned int z = 0; z < depth_; z++)
    {
      //uint8_t* target = reinterpret_cast<uint8_t*>(result->GetRow(depth_ - 1 - z));
      uint8_t* target = reinterpret_cast<uint8_t*>(result->GetRow(z));

      for (unsigned int y = 0; y < height_; y++)
      {
        const void* source = (reinterpret_cast<const uint8_t*>(image_.GetConstRow(y + z * height_)) +
                              bytesPerPixel * slice);

        memcpy(target, source, bytesPerPixel);
        target += bytesPerPixel;
      }
    }

    return result.release();
  }


  ImageBuffer3D::ImageBuffer3D(Orthanc::PixelFormat format,
                               unsigned int width,
                               unsigned int height,
                               unsigned int depth,
                               bool computeRange) :
    image_(format, width, height * depth, false),
    format_(format),
    width_(width),
    height_(height),
    depth_(depth),
    computeRange_(computeRange),
    hasRange_(false)
  {
    LinearAlgebra::AssignVector(voxelDimensions_, 1, 1, 1);

    LOG(INFO) << "Created an image of "
              << (GetEstimatedMemorySize() / (1024ll * 1024ll)) << "MB";
  }


  void ImageBuffer3D::Clear()
  {
    memset(image_.GetBuffer(), 0, image_.GetHeight() * image_.GetPitch());
  }


  void ImageBuffer3D::SetAxialGeometry(const CoordinateSystem3D& geometry)
  {
    axialGeometry_ = geometry;
  }


  void ImageBuffer3D::SetVoxelDimensions(double x,
                                         double y,
                                         double z)
  {
    if (x <= 0 ||
        y <= 0 ||
        z <= 0)
    {
      throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange);
    }

    {
      LinearAlgebra::AssignVector(voxelDimensions_, x, y, z);
    }
  }


  Vector ImageBuffer3D::GetVoxelDimensions(VolumeProjection projection) const
  {
    Vector result;
    switch (projection)
    {
    case VolumeProjection_Axial:
      result = voxelDimensions_;
      break;

    case VolumeProjection_Coronal:
      LinearAlgebra::AssignVector(result, voxelDimensions_[0], voxelDimensions_[2], voxelDimensions_[1]);
      break;

    case VolumeProjection_Sagittal:
      LinearAlgebra::AssignVector(result, voxelDimensions_[1], voxelDimensions_[2], voxelDimensions_[0]);
      break;

    default:
      throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange);
    }

    return result;
  }


  void ImageBuffer3D::GetSliceSize(unsigned int& width,
                                   unsigned int& height,
                                   VolumeProjection projection)
  {
    switch (projection)
    {
    case VolumeProjection_Axial:
      width = width_;
      height = height_;
      break;

    case VolumeProjection_Coronal:
      width = width_;
      height = depth_;
      break;

    case VolumeProjection_Sagittal:
      width = height_;
      height = depth_;
      break;

    default:
      throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange);
    }
  }


  ParallelSlices* ImageBuffer3D::GetGeometry(VolumeProjection projection) const
  {
    std::auto_ptr<ParallelSlices> result(new ParallelSlices);

    switch (projection)
    {
    case VolumeProjection_Axial:
      for (unsigned int z = 0; z < depth_; z++)
      {
        Vector origin = axialGeometry_.GetOrigin();
        origin += static_cast<double>(z) * voxelDimensions_[2] * axialGeometry_.GetNormal();

        result->AddSlice(origin,
                         axialGeometry_.GetAxisX(),
                         axialGeometry_.GetAxisY());
      }
      break;

    case VolumeProjection_Coronal:
      for (unsigned int y = 0; y < height_; y++)
      {
        Vector origin = axialGeometry_.GetOrigin();
        origin += static_cast<double>(y) * voxelDimensions_[1] * axialGeometry_.GetAxisY();
        origin += static_cast<double>(depth_ - 1) * voxelDimensions_[2] * axialGeometry_.GetNormal();

        result->AddSlice(origin,
                         axialGeometry_.GetAxisX(),
                         -axialGeometry_.GetNormal());
      }
      break;

    case VolumeProjection_Sagittal:
      for (unsigned int x = 0; x < width_; x++)
      {
        Vector origin = axialGeometry_.GetOrigin();
        origin += static_cast<double>(x) * voxelDimensions_[0] * axialGeometry_.GetAxisX();
        origin += static_cast<double>(depth_ - 1) * voxelDimensions_[2] * axialGeometry_.GetNormal();

        result->AddSlice(origin,
                         axialGeometry_.GetAxisY(),
                         -axialGeometry_.GetNormal());
      }
      break;

    default:
      throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange);
    }

    return result.release();
  }


  uint64_t ImageBuffer3D::GetEstimatedMemorySize() const
  {
    return image_.GetPitch() * image_.GetHeight() * Orthanc::GetBytesPerPixel(format_);
  }


  void ImageBuffer3D::ExtendImageRange(const Orthanc::ImageAccessor& slice)
  {
    if (!computeRange_ ||
        slice.GetWidth() == 0 ||
        slice.GetHeight() == 0)
    {
      return;
    }

    float sliceMin, sliceMax;

    switch (slice.GetFormat())
    {
    case Orthanc::PixelFormat_Grayscale8:
    case Orthanc::PixelFormat_Grayscale16:
    case Orthanc::PixelFormat_Grayscale32:
    case Orthanc::PixelFormat_SignedGrayscale16:
    {
      int64_t a, b;
      Orthanc::ImageProcessing::GetMinMaxIntegerValue(a, b, slice);
      sliceMin = static_cast<float>(a);
      sliceMax = static_cast<float>(b);
      break;
    }

    case Orthanc::PixelFormat_Float32:
      Orthanc::ImageProcessing::GetMinMaxFloatValue(sliceMin, sliceMax, slice);
      break;

    default:
      return;
    }

    if (hasRange_)
    {
      minValue_ = std::min(minValue_, sliceMin);
      maxValue_ = std::max(maxValue_, sliceMax);
    }
    else
    {
      hasRange_ = true;
      minValue_ = sliceMin;
      maxValue_ = sliceMax;
    }
  }


  bool ImageBuffer3D::GetRange(float& minValue,
                               float& maxValue) const
  {
    if (hasRange_)
    {
      minValue = minValue_;
      maxValue = maxValue_;
      return true;
    }
    else
    {
      return false;
    }
  }


  bool ImageBuffer3D::FitWindowingToRange(RenderStyle& style,
                                          const DicomFrameConverter& converter) const
  {
    if (hasRange_)
    {
      style.windowing_ = ImageWindowing_Custom;
      style.customWindowCenter_ = converter.Apply((minValue_ + maxValue_) / 2.0);
      style.customWindowWidth_ = converter.Apply(maxValue_ - minValue_);
      
      if (style.customWindowWidth_ > 1)
      {
        return true;
      }
    }

    style.windowing_ = ImageWindowing_Custom;
    style.customWindowCenter_ = 128.0;
    style.customWindowWidth_ = 256.0;
    return false;
  }


  ImageBuffer3D::SliceReader::SliceReader(const ImageBuffer3D& that,
                                          VolumeProjection projection,
                                          unsigned int slice)
  {
    switch (projection)
    {
      case VolumeProjection_Axial:
        that.GetAxialSliceAccessor(accessor_, slice, true);
        break;

      case VolumeProjection_Coronal:
        that.GetCoronalSliceAccessor(accessor_, slice, true);
        break;

      case VolumeProjection_Sagittal:
        sagittal_.reset(that.ExtractSagittalSlice(slice));
        sagittal_->GetReadOnlyAccessor(accessor_);
        break;

    default:
      throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange);
    }
  }


  void ImageBuffer3D::SliceWriter::Flush()
  {
    if (modified_)
    {
      if (sagittal_.get() != NULL)
      {
        // TODO
        throw Orthanc::OrthancException(Orthanc::ErrorCode_NotImplemented);
      }

      // Update the dynamic range of the underlying image, if
      // "computeRange_" is set to true
      that_.ExtendImageRange(accessor_);
    }
  }


  ImageBuffer3D::SliceWriter::SliceWriter(ImageBuffer3D& that,
                                          VolumeProjection projection,
                                          unsigned int slice) :
    that_(that),
    modified_(false)
  {
    switch (projection)
    {
      case VolumeProjection_Axial:
        that.GetAxialSliceAccessor(accessor_, slice, false);
        break;

      case VolumeProjection_Coronal:
        that.GetCoronalSliceAccessor(accessor_, slice, false);
        break;

      case VolumeProjection_Sagittal:
        sagittal_.reset(that.ExtractSagittalSlice(slice));
        sagittal_->GetWriteableAccessor(accessor_);
        break;

    default:
      throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange);
    }
  }


  uint8_t ImageBuffer3D::GetVoxelGrayscale8(unsigned int x,
                                            unsigned int y,
                                            unsigned int z) const
  {
    if (format_ != Orthanc::PixelFormat_Grayscale8)
    {
      throw Orthanc::OrthancException(Orthanc::ErrorCode_IncompatibleImageFormat);
    }

    if (x >= width_ ||
        y >= height_ ||
        z >= depth_)
    {
      throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange);
    }

    const void* p = image_.GetConstRow(y + height_ * (depth_ - 1 - z));
    return reinterpret_cast<const uint8_t*>(p) [x];
  }


  uint16_t ImageBuffer3D::GetVoxelGrayscale16(unsigned int x,
                                              unsigned int y,
                                              unsigned int z) const
  {
    if (format_ != Orthanc::PixelFormat_Grayscale16)
    {
      throw Orthanc::OrthancException(Orthanc::ErrorCode_IncompatibleImageFormat);
    }

    if (x >= width_ ||
        y >= height_ ||
        z >= depth_)
    {
      throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange);
    }

    const void* p = image_.GetConstRow(y + height_ * (depth_ - 1 - z));
    return reinterpret_cast<const uint16_t*>(p) [x];
  }


  Vector ImageBuffer3D::GetCoordinates(float x,
                                       float y,
                                       float z) const
  {
    Vector ps = GetVoxelDimensions(OrthancStone::VolumeProjection_Axial);

    const CoordinateSystem3D& axial = GetAxialGeometry();
    
    Vector origin = (axial.MapSliceToWorldCoordinates(-0.5 * ps[0], -0.5 * ps[1]) -
        0.5 * ps[2] * axial.GetNormal());

    return (origin +
            axial.GetAxisX() * ps[0] * x * static_cast<double>(GetWidth()) +
        axial.GetAxisY() * ps[1] * y * static_cast<double>(GetHeight()) +
        axial.GetNormal() * ps[2] * z * static_cast<double>(GetDepth()));
  }
}