Mercurial > hg > orthanc-stone
view Framework/Toolbox/FiniteProjectiveCamera.h @ 1305:a5326ce4f24b broker
Trackers and measuring tools now use the viewport instead of ViewportController, so that proper locks can be used
author | Benjamin Golinvaux <bgo@osimis.io> |
---|---|
date | Wed, 04 Mar 2020 09:45:38 +0100 |
parents | 2d8ab34c8c91 |
children |
line wrap: on
line source
/** * Stone of Orthanc * Copyright (C) 2012-2016 Sebastien Jodogne, Medical Physics * Department, University Hospital of Liege, Belgium * Copyright (C) 2017-2020 Osimis S.A., Belgium * * This program is free software: you can redistribute it and/or * modify it under the terms of the GNU Affero General Public License * as published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. **/ #pragma once #include "LinearAlgebra.h" #include "../Volumes/ImageBuffer3D.h" #include "../Volumes/VolumeImageGeometry.h" namespace OrthancStone { // Reference: "Multiple View Geometry in Computer Vision (2nd Edition)" class FiniteProjectiveCamera : public boost::noncopyable { private: Matrix p_; // 3x4 matrix - Equation (6.11) - page 157 Matrix k_; // 3x3 matrix of intrinsic parameters - Equation (6.10) - page 157 Matrix r_; // 3x3 rotation matrix in 3D space Vector c_; // 3x1 vector in 3D space corresponding to camera center Matrix minv_; // Inverse of the M = P(1:3,1:3) submatrix void ComputeMInverse(); void Setup(const Matrix& k, const Matrix& r, const Vector& c); void Setup(const Matrix& p); public: FiniteProjectiveCamera(const Matrix& k, const Matrix& r, const Vector& c) { Setup(k, r, c); } FiniteProjectiveCamera(const Matrix& p) { Setup(p); } FiniteProjectiveCamera(const double k[9], const double r[9], const double c[3]); FiniteProjectiveCamera(const double p[12]); // Constructor that implements camera calibration FiniteProjectiveCamera(const Vector& camera, const Vector& principalPoint, double angle, unsigned int imageWidth, unsigned int imageHeight, double pixelSpacingX, double pixelSpacingY); const Matrix& GetMatrix() const { return p_; } const Matrix& GetRotation() const { return r_; } const Vector& GetCenter() const { return c_; } const Matrix& GetIntrinsicParameters() const { return k_; } // Computes the 3D vector that represents the direction from the // camera center to the (x,y) imaged point Vector GetRayDirection(double x, double y) const; // Apply the camera to a 3D point "v" that is not at infinity. "v" // can be encoded either as a non-homogeneous vector (3 // components), or as a homogeneous vector (4 components). void ApplyFinite(double& x, double& y, const Vector& v) const; // Apply the camera to a 3D point "v" that is possibly at // infinity. The result is a 2D point in homogeneous coordinates. Vector ApplyGeneral(const Vector& v) const; Orthanc::ImageAccessor* ApplyRaytracer(const ImageBuffer3D& source, const VolumeImageGeometry& geometry, Orthanc::PixelFormat targetFormat, unsigned int targetWidth, unsigned int targetHeight, bool mip) const; }; }