Mercurial > hg > orthanc-stone
view Framework/Toolbox/GeometryToolbox.h @ 540:7428c5dfa5df ct-pet-dose-struct
Initial commit non working app
author | Benjamin Golinvaux <bgo@osimis.io> |
---|---|
date | Tue, 19 Mar 2019 16:29:07 +0100 |
parents | b70e9be013e4 |
children | 53cc787bd7bc |
line wrap: on
line source
/** * Stone of Orthanc * Copyright (C) 2012-2016 Sebastien Jodogne, Medical Physics * Department, University Hospital of Liege, Belgium * Copyright (C) 2017-2019 Osimis S.A., Belgium * * This program is free software: you can redistribute it and/or * modify it under the terms of the GNU Affero General Public License * as published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. **/ #pragma once #include "LinearAlgebra.h" namespace OrthancStone { namespace GeometryToolbox { void ProjectPointOntoPlane(Vector& result, const Vector& point, const Vector& planeNormal, const Vector& planeOrigin); bool IsParallel(const Vector& u, const Vector& v); bool IsParallelOrOpposite(bool& isOpposite, const Vector& u, const Vector& v); bool IntersectTwoPlanes(Vector& p, Vector& direction, const Vector& origin1, const Vector& normal1, const Vector& origin2, const Vector& normal2); bool ClipLineToRectangle(double& x1, // Coordinates of the clipped line (out) double& y1, double& x2, double& y2, const double ax, // Two points defining the line (in) const double ay, const double bx, const double by, const double& xmin, // Coordinates of the rectangle (in) const double& ymin, const double& xmax, const double& ymax); void GetPixelSpacing(double& spacingX, double& spacingY, const Orthanc::DicomMap& dicom); inline double ProjectAlongNormal(const Vector& point, const Vector& normal) { return boost::numeric::ublas::inner_prod(point, normal); } Matrix CreateRotationMatrixAlongX(double a); Matrix CreateRotationMatrixAlongY(double a); Matrix CreateRotationMatrixAlongZ(double a); Matrix CreateTranslationMatrix(double dx, double dy, double dz); Matrix CreateScalingMatrix(double sx, double sy, double sz); bool IntersectPlaneAndSegment(Vector& p, const Vector& normal, double d, const Vector& edgeFrom, const Vector& edgeTo); bool IntersectPlaneAndLine(Vector& p, const Vector& normal, double d, const Vector& origin, const Vector& direction); void AlignVectorsWithRotation(Matrix& r, const Vector& a, const Vector& b); inline float ComputeBilinearInterpolationUnitSquare(float x, float y, float f00, // source(0, 0) float f01, // source(1, 0) float f10, // source(0, 1) float f11); // source(1, 1) inline float ComputeTrilinearInterpolationUnitSquare(float x, float y, float z, float f000, // source(0, 0, 0) float f001, // source(1, 0, 0) float f010, // source(0, 1, 0) float f011, // source(1, 1, 0) float f100, // source(0, 0, 1) float f101, // source(1, 0, 1) float f110, // source(0, 1, 1) float f111); // source(1, 1, 1) }; } float OrthancStone::GeometryToolbox::ComputeBilinearInterpolationUnitSquare(float x, float y, float f00, float f01, float f10, float f11) { // This function only works within the unit square assert(x >= 0 && y >= 0 && x <= 1 && y <= 1); // https://en.wikipedia.org/wiki/Bilinear_interpolation#Unit_square return (f00 * (1.0f - x) * (1.0f - y) + f01 * x * (1.0f - y) + f10 * (1.0f - x) * y + f11 * x * y); } float OrthancStone::GeometryToolbox::ComputeTrilinearInterpolationUnitSquare(float x, float y, float z, float f000, float f001, float f010, float f011, float f100, float f101, float f110, float f111) { // "In practice, a trilinear interpolation is identical to two // bilinear interpolation combined with a linear interpolation" // https://en.wikipedia.org/wiki/Trilinear_interpolation#Method float a = ComputeBilinearInterpolationUnitSquare(x, y, f000, f001, f010, f011); float b = ComputeBilinearInterpolationUnitSquare(x, y, f100, f101, f110, f111); return (1.0f - z) * a + z * b; }