Mercurial > hg > orthanc-stone
view Framework/Toolbox/GeometryToolbox.cpp @ 872:733c6db3e5a3 am-dev
limiting the size of the cache
author | Alain Mazy <alain@mazy.be> |
---|---|
date | Mon, 01 Jul 2019 13:36:51 +0200 |
parents | b70e9be013e4 |
children | 53cc787bd7bc |
line wrap: on
line source
/** * Stone of Orthanc * Copyright (C) 2012-2016 Sebastien Jodogne, Medical Physics * Department, University Hospital of Liege, Belgium * Copyright (C) 2017-2019 Osimis S.A., Belgium * * This program is free software: you can redistribute it and/or * modify it under the terms of the GNU Affero General Public License * as published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. **/ #include "GeometryToolbox.h" #include <Core/Logging.h> #include <Core/OrthancException.h> #include <cassert> namespace OrthancStone { namespace GeometryToolbox { void ProjectPointOntoPlane(Vector& result, const Vector& point, const Vector& planeNormal, const Vector& planeOrigin) { double norm = boost::numeric::ublas::norm_2(planeNormal); if (LinearAlgebra::IsCloseToZero(norm)) { // Division by zero throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange); } // Make sure the norm of the normal is 1 Vector n; n = planeNormal / norm; // Algebraic form of line–plane intersection, where the line passes // through "point" along the direction "normal" (thus, l == n) // https://en.wikipedia.org/wiki/Line%E2%80%93plane_intersection#Algebraic_form result = boost::numeric::ublas::inner_prod(planeOrigin - point, n) * n + point; } bool IsParallelOrOpposite(bool& isOpposite, const Vector& u, const Vector& v) { // The dot product of the two vectors gives the cosine of the angle // between the vectors // https://en.wikipedia.org/wiki/Dot_product double normU = boost::numeric::ublas::norm_2(u); double normV = boost::numeric::ublas::norm_2(v); if (LinearAlgebra::IsCloseToZero(normU) || LinearAlgebra::IsCloseToZero(normV)) { return false; } double cosAngle = boost::numeric::ublas::inner_prod(u, v) / (normU * normV); // The angle must be zero, so the cosine must be almost equal to // cos(0) == 1 (or cos(180) == -1 if allowOppositeDirection == true) if (LinearAlgebra::IsCloseToZero(cosAngle - 1.0)) { isOpposite = false; return true; } else if (LinearAlgebra::IsCloseToZero(fabs(cosAngle) - 1.0)) { isOpposite = true; return true; } else { return false; } } bool IsParallel(const Vector& u, const Vector& v) { bool isOpposite; return (IsParallelOrOpposite(isOpposite, u, v) && !isOpposite); } bool IntersectTwoPlanes(Vector& p, Vector& direction, const Vector& origin1, const Vector& normal1, const Vector& origin2, const Vector& normal2) { // This is "Intersection of 2 Planes", possibility "(C) 3 Plane // Intersect Point" of: // http://geomalgorithms.com/a05-_intersect-1.html // The direction of the line of intersection is orthogonal to the // normal of both planes LinearAlgebra::CrossProduct(direction, normal1, normal2); double norm = boost::numeric::ublas::norm_2(direction); if (LinearAlgebra::IsCloseToZero(norm)) { // The two planes are parallel or coincident return false; } double d1 = -boost::numeric::ublas::inner_prod(normal1, origin1); double d2 = -boost::numeric::ublas::inner_prod(normal2, origin2); Vector tmp = d2 * normal1 - d1 * normal2; LinearAlgebra::CrossProduct(p, tmp, direction); p /= norm; return true; } bool ClipLineToRectangle(double& x1, // Coordinates of the clipped line (out) double& y1, double& x2, double& y2, const double ax, // Two points defining the line (in) const double ay, const double bx, const double by, const double& xmin, // Coordinates of the rectangle (in) const double& ymin, const double& xmax, const double& ymax) { // This is Skala algorithm for rectangles, "A new approach to line // and line segment clipping in homogeneous coordinates" // (2005). This is a direct, non-optimized translation of Algorithm // 2 in the paper. static const uint8_t tab1[16] = { 255 /* none */, 0, 0, 1, 1, 255 /* na */, 0, 2, 2, 0, 255 /* na */, 1, 1, 0, 0, 255 /* none */ }; static const uint8_t tab2[16] = { 255 /* none */, 3, 1, 3, 2, 255 /* na */, 2, 3, 3, 2, 255 /* na */, 2, 3, 1, 3, 255 /* none */ }; // Create the coordinates of the rectangle Vector x[4]; LinearAlgebra::AssignVector(x[0], xmin, ymin, 1.0); LinearAlgebra::AssignVector(x[1], xmax, ymin, 1.0); LinearAlgebra::AssignVector(x[2], xmax, ymax, 1.0); LinearAlgebra::AssignVector(x[3], xmin, ymax, 1.0); // Move to homogoneous coordinates in 2D Vector p; { Vector a, b; LinearAlgebra::AssignVector(a, ax, ay, 1.0); LinearAlgebra::AssignVector(b, bx, by, 1.0); LinearAlgebra::CrossProduct(p, a, b); } uint8_t c = 0; for (unsigned int k = 0; k < 4; k++) { if (boost::numeric::ublas::inner_prod(p, x[k]) >= 0) { c |= (1 << k); } } assert(c < 16); uint8_t i = tab1[c]; uint8_t j = tab2[c]; if (i == 255 || j == 255) { return false; // No intersection } else { Vector a, b, e; LinearAlgebra::CrossProduct(e, x[i], x[(i + 1) % 4]); LinearAlgebra::CrossProduct(a, p, e); LinearAlgebra::CrossProduct(e, x[j], x[(j + 1) % 4]); LinearAlgebra::CrossProduct(b, p, e); // Go back to non-homogeneous coordinates x1 = a[0] / a[2]; y1 = a[1] / a[2]; x2 = b[0] / b[2]; y2 = b[1] / b[2]; return true; } } void GetPixelSpacing(double& spacingX, double& spacingY, const Orthanc::DicomMap& dicom) { Vector v; if (LinearAlgebra::ParseVector(v, dicom, Orthanc::DICOM_TAG_PIXEL_SPACING)) { if (v.size() != 2 || v[0] <= 0 || v[1] <= 0) { LOG(ERROR) << "Bad value for PixelSpacing tag"; throw Orthanc::OrthancException(Orthanc::ErrorCode_BadFileFormat); } else { // WARNING: X/Y are swapped (Y comes first) spacingX = v[1]; spacingY = v[0]; } } else { // The "PixelSpacing" is of type 1C: It could be absent, use // default value in such a case spacingX = 1; spacingY = 1; } } Matrix CreateRotationMatrixAlongX(double a) { // Rotate along X axis (R_x) // https://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations Matrix r(3, 3); r(0,0) = 1; r(0,1) = 0; r(0,2) = 0; r(1,0) = 0; r(1,1) = cos(a); r(1,2) = -sin(a); r(2,0) = 0; r(2,1) = sin(a); r(2,2) = cos(a); return r; } Matrix CreateRotationMatrixAlongY(double a) { // Rotate along Y axis (R_y) // https://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations Matrix r(3, 3); r(0,0) = cos(a); r(0,1) = 0; r(0,2) = sin(a); r(1,0) = 0; r(1,1) = 1; r(1,2) = 0; r(2,0) = -sin(a); r(2,1) = 0; r(2,2) = cos(a); return r; } Matrix CreateRotationMatrixAlongZ(double a) { // Rotate along Z axis (R_z) // https://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations Matrix r(3, 3); r(0,0) = cos(a); r(0,1) = -sin(a); r(0,2) = 0; r(1,0) = sin(a); r(1,1) = cos(a); r(1,2) = 0; r(2,0) = 0; r(2,1) = 0; r(2,2) = 1; return r; } Matrix CreateTranslationMatrix(double dx, double dy, double dz) { Matrix m = LinearAlgebra::IdentityMatrix(4); m(0,3) = dx; m(1,3) = dy; m(2,3) = dz; return m; } Matrix CreateScalingMatrix(double sx, double sy, double sz) { Matrix m = LinearAlgebra::IdentityMatrix(4); m(0,0) = sx; m(1,1) = sy; m(2,2) = sz; return m; } bool IntersectPlaneAndSegment(Vector& p, const Vector& normal, double d, const Vector& edgeFrom, const Vector& edgeTo) { // http://geomalgorithms.com/a05-_intersect-1.html#Line-Plane-Intersection // Check for parallel line and plane Vector direction = edgeTo - edgeFrom; double denominator = boost::numeric::ublas::inner_prod(direction, normal); if (fabs(denominator) < 100.0 * std::numeric_limits<double>::epsilon()) { return false; } else { // Compute intersection double t = -(normal[0] * edgeFrom[0] + normal[1] * edgeFrom[1] + normal[2] * edgeFrom[2] + d) / denominator; if (t >= 0 && t <= 1) { // The intersection lies inside edge segment p = edgeFrom + t * direction; return true; } else { return false; } } } bool IntersectPlaneAndLine(Vector& p, const Vector& normal, double d, const Vector& origin, const Vector& direction) { // http://geomalgorithms.com/a05-_intersect-1.html#Line-Plane-Intersection // Check for parallel line and plane double denominator = boost::numeric::ublas::inner_prod(direction, normal); if (fabs(denominator) < 100.0 * std::numeric_limits<double>::epsilon()) { return false; } else { // Compute intersection double t = -(normal[0] * origin[0] + normal[1] * origin[1] + normal[2] * origin[2] + d) / denominator; p = origin + t * direction; return true; } } void AlignVectorsWithRotation(Matrix& r, const Vector& a, const Vector& b) { // This is Rodrigues' rotation formula: // https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula#Matrix_notation // Check also result A4.6 from "Multiple View Geometry in Computer // Vision - 2nd edition" (p. 584) if (a.size() != 3 || b.size() != 3) { throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange); } double aNorm = boost::numeric::ublas::norm_2(a); double bNorm = boost::numeric::ublas::norm_2(b); if (LinearAlgebra::IsCloseToZero(aNorm) || LinearAlgebra::IsCloseToZero(bNorm)) { LOG(ERROR) << "Vector with zero norm"; throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange); } Vector aUnit, bUnit; aUnit = a / aNorm; bUnit = b / bNorm; Vector v; LinearAlgebra::CrossProduct(v, aUnit, bUnit); double cosine = boost::numeric::ublas::inner_prod(aUnit, bUnit); if (LinearAlgebra::IsCloseToZero(1 + cosine)) { // "a == -b": TODO throw Orthanc::OrthancException(Orthanc::ErrorCode_NotImplemented); } Matrix k; LinearAlgebra::CreateSkewSymmetric(k, v); #if 0 double sine = boost::numeric::ublas::norm_2(v); r = (boost::numeric::ublas::identity_matrix<double>(3) + sine * k + (1 - cosine) * boost::numeric::ublas::prod(k, k)); #else r = (boost::numeric::ublas::identity_matrix<double>(3) + k + boost::numeric::ublas::prod(k, k) / (1 + cosine)); #endif } } }