view Framework/Toolbox/GeometryToolbox.h @ 1327:4f8db2d202c8 broker

OrthancSeriesProgressiveLoader now has two modes that can be selected at object creation : - progressive (will first load jpeg50, then jpeg90 then PAM) - non-progressive (will directly load PAM (uncompressed)) Please note that the slice loading order remains dynamic and depending upon the slice that the client code wishes to extract from the volume.
author Benjamin Golinvaux <bgo@osimis.io>
date Wed, 25 Mar 2020 14:34:27 +0100
parents 2d8ab34c8c91
children 5732edec7cbd
line wrap: on
line source

/**
 * Stone of Orthanc
 * Copyright (C) 2012-2016 Sebastien Jodogne, Medical Physics
 * Department, University Hospital of Liege, Belgium
 * Copyright (C) 2017-2020 Osimis S.A., Belgium
 *
 * This program is free software: you can redistribute it and/or
 * modify it under the terms of the GNU Affero General Public License
 * as published by the Free Software Foundation, either version 3 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Affero General Public License for more details.
 * 
 * You should have received a copy of the GNU Affero General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 **/


#pragma once

#include "LinearAlgebra.h"

namespace OrthancStone
{
  namespace GeometryToolbox
  {
    void ProjectPointOntoPlane(Vector& result,
                               const Vector& point,
                               const Vector& planeNormal,
                               const Vector& planeOrigin);

    /*
    Alternated faster implementation (untested yet)
    */
    void ProjectPointOntoPlane2(double& resultX,
                                double& resultY,
                                double& resultZ,
                                const Vector& point,
                                const Vector& planeNormal,
                                const Vector& planeOrigin);

    bool IsParallel(const Vector& u,
                    const Vector& v);

    bool IsParallelOrOpposite(bool& isOpposite,
                              const Vector& u,
                              const Vector& v);

    bool IntersectTwoPlanes(Vector& p,
                            Vector& direction,
                            const Vector& origin1,
                            const Vector& normal1,
                            const Vector& origin2,
                            const Vector& normal2);

    bool ClipLineToRectangle(double& x1,  // Coordinates of the clipped line (out)
                             double& y1,
                             double& x2,
                             double& y2,
                             const double ax,  // Two points defining the line (in)
                             const double ay,
                             const double bx,
                             const double by,
                             const double& xmin,   // Coordinates of the rectangle (in)
                             const double& ymin,
                             const double& xmax,
                             const double& ymax);

    void GetPixelSpacing(double& spacingX, 
                         double& spacingY,
                         const Orthanc::DicomMap& dicom);

    inline double ProjectAlongNormal(const Vector& point,
                                     const Vector& normal)
    {
      return boost::numeric::ublas::inner_prod(point, normal);
    }

    Matrix CreateRotationMatrixAlongX(double a);

    Matrix CreateRotationMatrixAlongY(double a);

    Matrix CreateRotationMatrixAlongZ(double a);

    Matrix CreateTranslationMatrix(double dx,
                                   double dy,
                                   double dz);

    Matrix CreateScalingMatrix(double sx,
                               double sy,
                               double sz);
    
    bool IntersectPlaneAndSegment(Vector& p,
                                  const Vector& normal,
                                  double d,
                                  const Vector& edgeFrom,
                                  const Vector& edgeTo);

    bool IntersectPlaneAndLine(Vector& p,
                               const Vector& normal,
                               double d,
                               const Vector& origin,
                               const Vector& direction);

    void AlignVectorsWithRotation(Matrix& r,
                                  const Vector& a,
                                  const Vector& b);

    inline float ComputeBilinearInterpolationUnitSquare(float x,
                                                        float y,
                                                        float f00,    // source(0, 0)
                                                        float f01,    // source(1, 0)
                                                        float f10,    // source(0, 1)
                                                        float f11);   // source(1, 1)

    inline float ComputeTrilinearInterpolationUnitSquare(float x,
                                                         float y,
                                                         float z,
                                                         float f000,   // source(0, 0, 0)
                                                         float f001,   // source(1, 0, 0)
                                                         float f010,   // source(0, 1, 0)
                                                         float f011,   // source(1, 1, 0)
                                                         float f100,   // source(0, 0, 1)
                                                         float f101,   // source(1, 0, 1)
                                                         float f110,   // source(0, 1, 1)
                                                         float f111);  // source(1, 1, 1)
  };
}


float OrthancStone::GeometryToolbox::ComputeBilinearInterpolationUnitSquare(float x,
                                                                            float y,
                                                                            float f00,
                                                                            float f01,
                                                                            float f10,
                                                                            float f11)
{
  // This function only works within the unit square
  assert(x >= 0 && y >= 0 && x <= 1 && y <= 1);

  // https://en.wikipedia.org/wiki/Bilinear_interpolation#Unit_square
  return (f00 * (1.0f - x) * (1.0f - y) +
          f01 * x * (1.0f - y) +
          f10 * (1.0f - x) * y +
          f11 * x * y);
}


float OrthancStone::GeometryToolbox::ComputeTrilinearInterpolationUnitSquare(float x,
                                                                             float y,
                                                                             float z,
                                                                             float f000,
                                                                             float f001,
                                                                             float f010,
                                                                             float f011,
                                                                             float f100,
                                                                             float f101,
                                                                             float f110,
                                                                             float f111)
{
  // "In practice, a trilinear interpolation is identical to two
  // bilinear interpolation combined with a linear interpolation"
  // https://en.wikipedia.org/wiki/Trilinear_interpolation#Method
  float a = ComputeBilinearInterpolationUnitSquare(x, y, f000, f001, f010, f011);
  float b = ComputeBilinearInterpolationUnitSquare(x, y, f100, f101, f110, f111);

  return (1.0f - z) * a + z * b;
}