view Framework/Toolbox/DisjointDataSet.h @ 1327:4f8db2d202c8 broker

OrthancSeriesProgressiveLoader now has two modes that can be selected at object creation : - progressive (will first load jpeg50, then jpeg90 then PAM) - non-progressive (will directly load PAM (uncompressed)) Please note that the slice loading order remains dynamic and depending upon the slice that the client code wishes to extract from the volume.
author Benjamin Golinvaux <bgo@osimis.io>
date Wed, 25 Mar 2020 14:34:27 +0100
parents 2d8ab34c8c91
children
line wrap: on
line source

/**
 * Stone of Orthanc
 * Copyright (C) 2012-2016 Sebastien Jodogne, Medical Physics
 * Department, University Hospital of Liege, Belgium
 * Copyright (C) 2017-2020 Osimis S.A., Belgium
 *
 * This program is free software: you can redistribute it and/or
 * modify it under the terms of the GNU Affero General Public License
 * as published by the Free Software Foundation, either version 3 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 **/

#pragma once

#include <vector> 

#include "../StoneException.h"

namespace OrthancStone
{
  class DisjointDataSet
  {
  public:
    DisjointDataSet(size_t itemCount) :
      parents_(itemCount),
      ranks_(itemCount)
    {
      for (size_t index = 0; index < parents_.size(); index++)
      {
        SetParent(index,index);
        ranks_[index] = 1;
      }
    }

    size_t Find(size_t item)
    {
      /*
      If parents_[i] == i, it means i is representative of a set.
      Otherwise, we go up the tree...
      */
      if (GetParent(item) != item)
      {
        // if item is not a top item (representative of its set),
        // we use path compression to improve future lookups 
        // see: https://en.wikipedia.org/wiki/Disjoint-set_data_structure#Path_compression
        SetParent(item, Find(parents_[item]));
      }

      // now that paths have been compressed, we are positively certain
      // that item's parent is a set ("X is a set" means that X is the 
      // representative of a set)
      return GetParent(item);
    }

    /*
    This merge the two sets that contains itemA and itemB
    */
    void Union(size_t itemA, size_t itemB)
    {
      // Find current sets of x and y 
      size_t setA = Find(itemA);
      size_t setB = Find(itemB);

      // if setA == setB, it means they are already in the same set and 
      // do not need to be merged!
      if (setA != setB)
      {
        // we need to merge the sets, which means that the trees representing
        // the sets needs to be merged (there must be a single top parent to 
        // all the items originally belonging to setA and setB must be the same)

        // since the algorithm speed is inversely proportional to the tree
        // height (the rank), we need to combine trees in a way that 
        // minimizes this rank. See "Union by rank" at 
        // https://en.wikipedia.org/wiki/Disjoint-set_data_structure#by_rank
        if (GetRank(setA) < GetRank(setB))
        {
          SetParent(setA, setB);
        }
        else if (GetRank(setA) > GetRank(setB))
        {
          SetParent(setB, setA);
        }
        else
        {
          SetParent(setB, setA);
          BumpRank(setA);
          // the trees had the same height but we attached the whole of setB
          // under setA (under its parent), so the resulting tree is now 
          // 1 higher. setB is NOT representative of a set anymore.
        }
      }
    }

  private:
    size_t GetRank(size_t i) const
    {
      ORTHANC_ASSERT(i < ranks_.size());
      ORTHANC_ASSERT(ranks_.size() == parents_.size());
      return ranks_[i];
    }

    size_t GetParent(size_t i) const
    {
      ORTHANC_ASSERT(i < parents_.size());
      ORTHANC_ASSERT(ranks_.size() == parents_.size());
      return parents_[i];
    }

    void SetParent(size_t i, size_t parent)
    {
      ORTHANC_ASSERT(i < parents_.size());
      ORTHANC_ASSERT(ranks_.size() == parents_.size());
      parents_[i] = parent;
    }

    void BumpRank(size_t i)
    {
      ORTHANC_ASSERT(i < ranks_.size());
      ORTHANC_ASSERT(ranks_.size() == parents_.size());
      ranks_[i] = ranks_[i] + 1u;
    }

    /*
    This vector contains the direct parent of each item
    */
    std::vector<size_t> parents_;

    /*
    This vector contains the tree height of each set. The values in the
    vector for non-representative items is UNDEFINED!
    */
    std::vector<size_t> ranks_;
  };

}