Mercurial > hg > orthanc-stone
view UnitTestsSources/UnitTestsMain.cpp @ 1178:3c7cdbf32e2a broker
DicomStructureSet::ProjectOntoLayer()
author | Sebastien Jodogne <s.jodogne@gmail.com> |
---|---|
date | Wed, 20 Nov 2019 14:12:11 +0100 |
parents | c3d219b6266b |
children | 0ca50d275b9a |
line wrap: on
line source
/** * Stone of Orthanc * Copyright (C) 2012-2016 Sebastien Jodogne, Medical Physics * Department, University Hospital of Liege, Belgium * Copyright (C) 2017-2019 Osimis S.A., Belgium * * This program is free software: you can redistribute it and/or * modify it under the terms of the GNU Affero General Public License * as published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. **/ #include "gtest/gtest.h" #include "../Framework/Deprecated/Layers/FrameRenderer.h" #include "../Framework/Deprecated/Toolbox/DownloadStack.h" #include "../Framework/Deprecated/Toolbox/MessagingToolbox.h" #include "../Framework/Deprecated/Toolbox/OrthancSlicesLoader.h" #include "../Framework/StoneInitialization.h" #include "../Framework/Toolbox/FiniteProjectiveCamera.h" #include "../Framework/Toolbox/GeometryToolbox.h" #include "../Framework/Volumes/ImageBuffer3D.h" #include "../Platforms/Generic/OracleWebService.h" #include <Core/HttpClient.h> #include <Core/Images/ImageProcessing.h> #include <Core/Logging.h> #include <Core/MultiThreading/SharedMessageQueue.h> #include <Core/OrthancException.h> #include <boost/lexical_cast.hpp> #include <boost/date_time/posix_time/posix_time.hpp> #include <boost/thread/thread.hpp> #include <boost/math/special_functions/round.hpp> TEST(GeometryToolbox, Interpolation) { using namespace OrthancStone::GeometryToolbox; // https://en.wikipedia.org/wiki/Bilinear_interpolation#Application_in_image_processing ASSERT_FLOAT_EQ(146.1f, ComputeBilinearInterpolationUnitSquare(0.5f, 0.2f, 91, 210, 162, 95)); ASSERT_FLOAT_EQ(91, ComputeBilinearInterpolationUnitSquare(0, 0, 91, 210, 162, 95)); ASSERT_FLOAT_EQ(210, ComputeBilinearInterpolationUnitSquare(1, 0, 91, 210, 162, 95)); ASSERT_FLOAT_EQ(162, ComputeBilinearInterpolationUnitSquare(0, 1, 91, 210, 162, 95)); ASSERT_FLOAT_EQ(95, ComputeBilinearInterpolationUnitSquare(1, 1, 91, 210, 162, 95)); ASSERT_FLOAT_EQ(123.35f, ComputeTrilinearInterpolationUnitSquare (0.5f, 0.2f, 0.7f, 91, 210, 162, 95, 51, 190, 80, 92)); ASSERT_FLOAT_EQ(ComputeBilinearInterpolationUnitSquare(0.5f, 0.2f, 91, 210, 162, 95), ComputeTrilinearInterpolationUnitSquare(0.5f, 0.2f, 0, 91, 210, 162, 95, 51, 190, 80, 92)); ASSERT_FLOAT_EQ(ComputeBilinearInterpolationUnitSquare(0.5f, 0.2f, 51, 190, 80, 92), ComputeTrilinearInterpolationUnitSquare(0.5f, 0.2f, 1, 91, 210, 162, 95, 51, 190, 80, 92)); } static bool CompareMatrix(const OrthancStone::Matrix& a, const OrthancStone::Matrix& b, double threshold = 0.00000001) { if (a.size1() != b.size1() || a.size2() != b.size2()) { return false; } for (size_t i = 0; i < a.size1(); i++) { for (size_t j = 0; j < a.size2(); j++) { if (fabs(a(i, j) - b(i, j)) > threshold) { LOG(ERROR) << "Too large difference in component (" << i << "," << j << "): " << a(i,j) << " != " << b(i,j); return false; } } } return true; } static bool CompareVector(const OrthancStone::Vector& a, const OrthancStone::Vector& b, double threshold = 0.00000001) { if (a.size() != b.size()) { return false; } for (size_t i = 0; i < a.size(); i++) { if (fabs(a(i) - b(i)) > threshold) { LOG(ERROR) << "Too large difference in component " << i << ": " << a(i) << " != " << b(i); return false; } } return true; } TEST(FiniteProjectiveCamera, Decomposition1) { // Example 6.2 of "Multiple View Geometry in Computer Vision - 2nd // edition" (page 163) const double p[12] = { 3.53553e+2, 3.39645e+2, 2.77744e+2, -1.44946e+6, -1.03528e+2, 2.33212e+1, 4.59607e+2, -6.32525e+5, 7.07107e-1, -3.53553e-1, 6.12372e-1, -9.18559e+2 }; OrthancStone::FiniteProjectiveCamera camera(p); ASSERT_EQ(3u, camera.GetMatrix().size1()); ASSERT_EQ(4u, camera.GetMatrix().size2()); ASSERT_EQ(3u, camera.GetIntrinsicParameters().size1()); ASSERT_EQ(3u, camera.GetIntrinsicParameters().size2()); ASSERT_EQ(3u, camera.GetRotation().size1()); ASSERT_EQ(3u, camera.GetRotation().size2()); ASSERT_EQ(3u, camera.GetCenter().size()); ASSERT_NEAR(1000.0, camera.GetCenter()[0], 0.01); ASSERT_NEAR(2000.0, camera.GetCenter()[1], 0.01); ASSERT_NEAR(1500.0, camera.GetCenter()[2], 0.01); ASSERT_NEAR(468.2, camera.GetIntrinsicParameters() (0, 0), 0.1); ASSERT_NEAR(91.2, camera.GetIntrinsicParameters() (0, 1), 0.1); ASSERT_NEAR(300.0, camera.GetIntrinsicParameters() (0, 2), 0.1); ASSERT_NEAR(427.2, camera.GetIntrinsicParameters() (1, 1), 0.1); ASSERT_NEAR(200.0, camera.GetIntrinsicParameters() (1, 2), 0.1); ASSERT_NEAR(1.0, camera.GetIntrinsicParameters() (2, 2), 0.1); ASSERT_NEAR(0, camera.GetIntrinsicParameters() (1, 0), 0.0000001); ASSERT_NEAR(0, camera.GetIntrinsicParameters() (2, 0), 0.0000001); ASSERT_NEAR(0, camera.GetIntrinsicParameters() (2, 1), 0.0000001); ASSERT_NEAR(0.41380, camera.GetRotation() (0, 0), 0.00001); ASSERT_NEAR(0.90915, camera.GetRotation() (0, 1), 0.00001); ASSERT_NEAR(0.04708, camera.GetRotation() (0, 2), 0.00001); ASSERT_NEAR(-0.57338, camera.GetRotation() (1, 0), 0.00001); ASSERT_NEAR(0.22011, camera.GetRotation() (1, 1), 0.00001); ASSERT_NEAR(0.78917, camera.GetRotation() (1, 2), 0.00001); ASSERT_NEAR(0.70711, camera.GetRotation() (2, 0), 0.00001); ASSERT_NEAR(-0.35355, camera.GetRotation() (2, 1), 0.00001); ASSERT_NEAR(0.61237, camera.GetRotation() (2, 2), 0.00001); ASSERT_TRUE(OrthancStone::LinearAlgebra::IsRotationMatrix(camera.GetRotation())); OrthancStone::FiniteProjectiveCamera camera2(camera.GetIntrinsicParameters(), camera.GetRotation(), camera.GetCenter()); ASSERT_TRUE(CompareMatrix(camera.GetMatrix(), camera2.GetMatrix())); ASSERT_TRUE(CompareMatrix(camera.GetIntrinsicParameters(), camera2.GetIntrinsicParameters())); ASSERT_TRUE(CompareMatrix(camera.GetRotation(), camera2.GetRotation())); ASSERT_TRUE(CompareVector(camera.GetCenter(), camera2.GetCenter())); } TEST(FiniteProjectiveCamera, Decomposition2) { const double p[] = { 1188.111986, 580.205341, -808.445330, 128000.000000, -366.466264, 1446.510501, 418.499736, 128000.000000, -0.487118, 0.291726, -0.823172, 500.000000 }; const double k[] = { -1528.494743, 0.000000, 256.000000, 0.000000, 1528.494743, 256.000000, 0.000000, 0.000000, 1.000000 }; const double r[] = { -0.858893, -0.330733, 0.391047, -0.158171, 0.897503, 0.411668, -0.487118, 0.291726, -0.823172 }; const double c[] = { 243.558936, -145.863085, 411.585964 }; OrthancStone::FiniteProjectiveCamera camera(p); ASSERT_TRUE(OrthancStone::LinearAlgebra::IsRotationMatrix(camera.GetRotation())); OrthancStone::FiniteProjectiveCamera camera2(k, r, c); ASSERT_TRUE(CompareMatrix(camera.GetMatrix(), camera2.GetMatrix(), 1)); ASSERT_TRUE(CompareMatrix(camera.GetIntrinsicParameters(), camera2.GetIntrinsicParameters(), 0.001)); ASSERT_TRUE(CompareMatrix(camera.GetRotation(), camera2.GetRotation(), 0.000001)); ASSERT_TRUE(CompareVector(camera.GetCenter(), camera2.GetCenter(), 0.0001)); } TEST(FiniteProjectiveCamera, Decomposition3) { const double p[] = { 10, 0, 0, 0, 0, 20, 0, 0, 0, 0, 30, 0 }; OrthancStone::FiniteProjectiveCamera camera(p); ASSERT_TRUE(OrthancStone::LinearAlgebra::IsRotationMatrix(camera.GetRotation())); ASSERT_DOUBLE_EQ(10, camera.GetIntrinsicParameters() (0, 0)); ASSERT_DOUBLE_EQ(20, camera.GetIntrinsicParameters() (1, 1)); ASSERT_DOUBLE_EQ(30, camera.GetIntrinsicParameters() (2, 2)); ASSERT_DOUBLE_EQ(1, camera.GetRotation() (0, 0)); ASSERT_DOUBLE_EQ(1, camera.GetRotation() (1, 1)); ASSERT_DOUBLE_EQ(1, camera.GetRotation() (2, 2)); ASSERT_DOUBLE_EQ(0, camera.GetCenter() (0)); ASSERT_DOUBLE_EQ(0, camera.GetCenter() (1)); ASSERT_DOUBLE_EQ(0, camera.GetCenter() (2)); } TEST(FiniteProjectiveCamera, Decomposition4) { const double p[] = { 1, 0, 0, 10, 0, 1, 0, 20, 0, 0, 1, 30 }; OrthancStone::FiniteProjectiveCamera camera(p); ASSERT_TRUE(OrthancStone::LinearAlgebra::IsRotationMatrix(camera.GetRotation())); ASSERT_DOUBLE_EQ(1, camera.GetIntrinsicParameters() (0, 0)); ASSERT_DOUBLE_EQ(1, camera.GetIntrinsicParameters() (1, 1)); ASSERT_DOUBLE_EQ(1, camera.GetIntrinsicParameters() (2, 2)); ASSERT_DOUBLE_EQ(1, camera.GetRotation() (0, 0)); ASSERT_DOUBLE_EQ(1, camera.GetRotation() (1, 1)); ASSERT_DOUBLE_EQ(1, camera.GetRotation() (2, 2)); ASSERT_DOUBLE_EQ(-10, camera.GetCenter() (0)); ASSERT_DOUBLE_EQ(-20, camera.GetCenter() (1)); ASSERT_DOUBLE_EQ(-30, camera.GetCenter() (2)); } TEST(FiniteProjectiveCamera, Decomposition5) { const double p[] = { 0, 0, 10, 0, 0, 20, 0, 0, 30, 0, 0, 0 }; OrthancStone::FiniteProjectiveCamera camera(p); ASSERT_TRUE(OrthancStone::LinearAlgebra::IsRotationMatrix(camera.GetRotation())); ASSERT_DOUBLE_EQ(-10, camera.GetIntrinsicParameters() (0, 0)); ASSERT_DOUBLE_EQ(20, camera.GetIntrinsicParameters() (1, 1)); ASSERT_DOUBLE_EQ(30, camera.GetIntrinsicParameters() (2, 2)); ASSERT_DOUBLE_EQ(-1, camera.GetRotation() (0, 2)); ASSERT_DOUBLE_EQ(1, camera.GetRotation() (1, 1)); ASSERT_DOUBLE_EQ(1, camera.GetRotation() (2, 0)); ASSERT_DOUBLE_EQ(0, camera.GetCenter() (0)); ASSERT_DOUBLE_EQ(0, camera.GetCenter() (1)); ASSERT_DOUBLE_EQ(0, camera.GetCenter() (2)); OrthancStone::FiniteProjectiveCamera camera2(camera.GetIntrinsicParameters(), camera.GetRotation(), camera.GetCenter()); ASSERT_TRUE(CompareMatrix(camera.GetMatrix(), camera2.GetMatrix())); ASSERT_TRUE(CompareMatrix(camera.GetIntrinsicParameters(), camera2.GetIntrinsicParameters())); ASSERT_TRUE(CompareMatrix(camera.GetRotation(), camera2.GetRotation())); ASSERT_TRUE(CompareVector(camera.GetCenter(), camera2.GetCenter())); } static double GetCosAngle(const OrthancStone::Vector& a, const OrthancStone::Vector& b) { // Returns the cosine of the angle between two vectors // https://en.wikipedia.org/wiki/Dot_product#Geometric_definition return boost::numeric::ublas::inner_prod(a, b) / (boost::numeric::ublas::norm_2(a) * boost::numeric::ublas::norm_2(b)); } TEST(FiniteProjectiveCamera, Ray) { const double pp[] = { -1499.650894, 2954.618773, -259.737419, 637891.819097, -2951.517707, -1501.019129, -285.785281, 637891.819097, 0.008528, 0.003067, -0.999959, 2491.764918 }; const OrthancStone::FiniteProjectiveCamera camera(pp); ASSERT_NEAR(-21.2492, camera.GetCenter() (0), 0.0001); ASSERT_NEAR(-7.64234, camera.GetCenter() (1), 0.00001); ASSERT_NEAR(2491.66, camera.GetCenter() (2), 0.01); // Image plane that led to these parameters, with principal point at // (256,256). The image has dimensions 512x512. OrthancStone::Vector o = OrthancStone::LinearAlgebra::CreateVector(7.009620, 2.521030, -821.942000); OrthancStone::Vector ax = OrthancStone::LinearAlgebra::CreateVector(-0.453219, 0.891399, -0.001131); OrthancStone::Vector ay = OrthancStone::LinearAlgebra::CreateVector(-0.891359, -0.453210, -0.008992); OrthancStone::CoordinateSystem3D imagePlane(o, ax, ay); // Back-projection of the principal point { OrthancStone::Vector ray = camera.GetRayDirection(256, 256); // The principal axis vector is orthogonal to the image plane // (i.e. parallel to the plane normal), in the opposite direction // ("-1" corresponds to "cos(pi)"). ASSERT_NEAR(-1, GetCosAngle(ray, imagePlane.GetNormal()), 0.0000001); // Forward projection of principal axis, resulting in the principal point double x, y; camera.ApplyFinite(x, y, camera.GetCenter() - ray); ASSERT_NEAR(256, x, 0.00001); ASSERT_NEAR(256, y, 0.00001); } // Back-projection of the 4 corners of the image std::vector<double> cx, cy; cx.push_back(0); cy.push_back(0); cx.push_back(512); cy.push_back(0); cx.push_back(512); cy.push_back(512); cx.push_back(0); cy.push_back(512); bool first = true; double angle; for (size_t i = 0; i < cx.size(); i++) { OrthancStone::Vector ray = camera.GetRayDirection(cx[i], cy[i]); // Check that the angle wrt. principal axis is the same for all // the 4 corners double a = GetCosAngle(ray, imagePlane.GetNormal()); if (first) { first = false; angle = a; } else { ASSERT_NEAR(angle, a, 0.000001); } // Forward projection of the ray, going back to the original point double x, y; camera.ApplyFinite(x, y, camera.GetCenter() - ray); ASSERT_NEAR(cx[i], x, 0.00001); ASSERT_NEAR(cy[i], y, 0.00001); // Alternative construction, by computing the intersection of the // ray with the image plane OrthancStone::Vector p; ASSERT_TRUE(imagePlane.IntersectLine(p, camera.GetCenter(), -ray)); imagePlane.ProjectPoint(x, y, p); ASSERT_NEAR(cx[i], x + 256, 0.01); ASSERT_NEAR(cy[i], y + 256, 0.01); } } TEST(Matrix, Inverse1) { OrthancStone::Matrix a, b; a.resize(0, 0); OrthancStone::LinearAlgebra::InvertMatrix(b, a); ASSERT_EQ(0u, b.size1()); ASSERT_EQ(0u, b.size2()); a.resize(2, 3); ASSERT_THROW(OrthancStone::LinearAlgebra::InvertMatrix(b, a), Orthanc::OrthancException); a.resize(1, 1); a(0, 0) = 45.0; ASSERT_DOUBLE_EQ(45, OrthancStone::LinearAlgebra::ComputeDeterminant(a)); OrthancStone::LinearAlgebra::InvertMatrix(b, a); ASSERT_EQ(1u, b.size1()); ASSERT_EQ(1u, b.size2()); ASSERT_DOUBLE_EQ(1.0 / 45.0, b(0, 0)); a(0, 0) = 0; ASSERT_DOUBLE_EQ(0, OrthancStone::LinearAlgebra::ComputeDeterminant(a)); ASSERT_THROW(OrthancStone::LinearAlgebra::InvertMatrix(b, a), Orthanc::OrthancException); } TEST(Matrix, Inverse2) { OrthancStone::Matrix a, b; a.resize(2, 2); a(0, 0) = 4; a(0, 1) = 3; a(1, 0) = 3; a(1, 1) = 2; ASSERT_DOUBLE_EQ(-1, OrthancStone::LinearAlgebra::ComputeDeterminant(a)); OrthancStone::LinearAlgebra::InvertMatrix(b, a); ASSERT_EQ(2u, b.size1()); ASSERT_EQ(2u, b.size2()); ASSERT_DOUBLE_EQ(-2, b(0, 0)); ASSERT_DOUBLE_EQ(3, b(0, 1)); ASSERT_DOUBLE_EQ(3, b(1, 0)); ASSERT_DOUBLE_EQ(-4, b(1, 1)); a(0, 0) = 1; a(0, 1) = 2; a(1, 0) = 3; a(1, 1) = 4; ASSERT_DOUBLE_EQ(-2, OrthancStone::LinearAlgebra::ComputeDeterminant(a)); OrthancStone::LinearAlgebra::InvertMatrix(b, a); ASSERT_DOUBLE_EQ(-2, b(0, 0)); ASSERT_DOUBLE_EQ(1, b(0, 1)); ASSERT_DOUBLE_EQ(1.5, b(1, 0)); ASSERT_DOUBLE_EQ(-0.5, b(1, 1)); } TEST(Matrix, Inverse3) { OrthancStone::Matrix a, b; a.resize(3, 3); a(0, 0) = 7; a(0, 1) = 2; a(0, 2) = 1; a(1, 0) = 0; a(1, 1) = 3; a(1, 2) = -1; a(2, 0) = -3; a(2, 1) = 4; a(2, 2) = -2; ASSERT_DOUBLE_EQ(1, OrthancStone::LinearAlgebra::ComputeDeterminant(a)); OrthancStone::LinearAlgebra::InvertMatrix(b, a); ASSERT_EQ(3u, b.size1()); ASSERT_EQ(3u, b.size2()); ASSERT_DOUBLE_EQ(-2, b(0, 0)); ASSERT_DOUBLE_EQ(8, b(0, 1)); ASSERT_DOUBLE_EQ(-5, b(0, 2)); ASSERT_DOUBLE_EQ(3, b(1, 0)); ASSERT_DOUBLE_EQ(-11, b(1, 1)); ASSERT_DOUBLE_EQ(7, b(1, 2)); ASSERT_DOUBLE_EQ(9, b(2, 0)); ASSERT_DOUBLE_EQ(-34, b(2, 1)); ASSERT_DOUBLE_EQ(21, b(2, 2)); a(0, 0) = 1; a(0, 1) = 2; a(0, 2) = 2; a(1, 0) = 1; a(1, 1) = 0; a(1, 2) = 1; a(2, 0) = 1; a(2, 1) = 2; a(2, 2) = 1; ASSERT_DOUBLE_EQ(2, OrthancStone::LinearAlgebra::ComputeDeterminant(a)); OrthancStone::LinearAlgebra::InvertMatrix(b, a); ASSERT_EQ(3u, b.size1()); ASSERT_EQ(3u, b.size2()); ASSERT_DOUBLE_EQ(-1, b(0, 0)); ASSERT_DOUBLE_EQ(1, b(0, 1)); ASSERT_DOUBLE_EQ(1, b(0, 2)); ASSERT_DOUBLE_EQ(0, b(1, 0)); ASSERT_DOUBLE_EQ(-0.5, b(1, 1)); ASSERT_DOUBLE_EQ(0.5, b(1, 2)); ASSERT_DOUBLE_EQ(1, b(2, 0)); ASSERT_DOUBLE_EQ(0, b(2, 1)); ASSERT_DOUBLE_EQ(-1, b(2, 2)); } TEST(Matrix, Inverse4) { OrthancStone::Matrix a, b; a.resize(4, 4); a(0, 0) = 2; a(0, 1) = 1; a(0, 2) = 2; a(0, 3) = -3; a(1, 0) = -2; a(1, 1) = 2; a(1, 2) = -1; a(1, 3) = -1; a(2, 0) = 2; a(2, 1) = 2; a(2, 2) = -3; a(2, 3) = -1; a(3, 0) = 3; a(3, 1) = -2; a(3, 2) = -3; a(3, 3) = -1; OrthancStone::LinearAlgebra::InvertMatrix(b, a); ASSERT_EQ(4u, b.size1()); ASSERT_EQ(4u, b.size2()); b *= 134.0; // This is the determinant ASSERT_DOUBLE_EQ(8, b(0, 0)); ASSERT_DOUBLE_EQ(-44, b(0, 1)); ASSERT_DOUBLE_EQ(30, b(0, 2)); ASSERT_DOUBLE_EQ(-10, b(0, 3)); ASSERT_DOUBLE_EQ(2, b(1, 0)); ASSERT_DOUBLE_EQ(-11, b(1, 1)); ASSERT_DOUBLE_EQ(41, b(1, 2)); ASSERT_DOUBLE_EQ(-36, b(1, 3)); ASSERT_DOUBLE_EQ(16, b(2, 0)); ASSERT_DOUBLE_EQ(-21, b(2, 1)); ASSERT_DOUBLE_EQ(-7, b(2, 2)); ASSERT_DOUBLE_EQ(-20, b(2, 3)); ASSERT_DOUBLE_EQ(-28, b(3, 0)); ASSERT_DOUBLE_EQ(-47, b(3, 1)); ASSERT_DOUBLE_EQ(29, b(3, 2)); ASSERT_DOUBLE_EQ(-32, b(3, 3)); } TEST(FiniteProjectiveCamera, Calibration) { unsigned int volumeWidth = 512; unsigned int volumeHeight = 512; unsigned int volumeDepth = 110; OrthancStone::Vector camera = OrthancStone::LinearAlgebra::CreateVector (-1000, -5000, -static_cast<double>(volumeDepth) * 32); OrthancStone::Vector principalPoint = OrthancStone::LinearAlgebra::CreateVector (volumeWidth/2, volumeHeight/2, volumeDepth * 2); OrthancStone::FiniteProjectiveCamera c(camera, principalPoint, 0, 512, 512, 1, 1); double swapv[9] = { 1, 0, 0, 0, -1, 512, 0, 0, 1 }; OrthancStone::Matrix swap; OrthancStone::LinearAlgebra::FillMatrix(swap, 3, 3, swapv); OrthancStone::Matrix p = OrthancStone::LinearAlgebra::Product(swap, c.GetMatrix()); p /= p(2,3); ASSERT_NEAR( 1.04437, p(0,0), 0.00001); ASSERT_NEAR(-0.0703111, p(0,1), 0.00000001); ASSERT_NEAR(-0.179283, p(0,2), 0.000001); ASSERT_NEAR( 61.7431, p(0,3), 0.0001); ASSERT_NEAR( 0.11127, p(1,0), 0.000001); ASSERT_NEAR(-0.595541, p(1,1), 0.000001); ASSERT_NEAR( 0.872211, p(1,2), 0.000001); ASSERT_NEAR( 203.748, p(1,3), 0.001); ASSERT_NEAR( 3.08593e-05, p(2,0), 0.0000000001); ASSERT_NEAR( 0.000129138, p(2,1), 0.000000001); ASSERT_NEAR( 9.18901e-05, p(2,2), 0.0000000001); ASSERT_NEAR( 1, p(2,3), 0.0000001); } static bool IsEqualRotationVector(OrthancStone::Vector a, OrthancStone::Vector b) { if (a.size() != b.size() || a.size() != 3) { return false; } else { OrthancStone::LinearAlgebra::NormalizeVector(a); OrthancStone::LinearAlgebra::NormalizeVector(b); return OrthancStone::LinearAlgebra::IsCloseToZero(boost::numeric::ublas::norm_2(a - b)); } } TEST(GeometryToolbox, AlignVectorsWithRotation) { OrthancStone::Vector a, b; OrthancStone::Matrix r; OrthancStone::LinearAlgebra::AssignVector(a, -200, 200, -846.63); OrthancStone::LinearAlgebra::AssignVector(b, 0, 0, 1); OrthancStone::GeometryToolbox::AlignVectorsWithRotation(r, a, b); ASSERT_TRUE(OrthancStone::LinearAlgebra::IsRotationMatrix(r)); ASSERT_TRUE(IsEqualRotationVector(OrthancStone::LinearAlgebra::Product(r, a), b)); OrthancStone::GeometryToolbox::AlignVectorsWithRotation(r, b, a); ASSERT_TRUE(OrthancStone::LinearAlgebra::IsRotationMatrix(r)); ASSERT_TRUE(IsEqualRotationVector(OrthancStone::LinearAlgebra::Product(r, b), a)); OrthancStone::LinearAlgebra::AssignVector(a, 1, 0, 0); OrthancStone::LinearAlgebra::AssignVector(b, 0, 0, 1); OrthancStone::GeometryToolbox::AlignVectorsWithRotation(r, a, b); ASSERT_TRUE(OrthancStone::LinearAlgebra::IsRotationMatrix(r)); ASSERT_TRUE(IsEqualRotationVector(OrthancStone::LinearAlgebra::Product(r, a), b)); OrthancStone::LinearAlgebra::AssignVector(a, 0, 1, 0); OrthancStone::LinearAlgebra::AssignVector(b, 0, 0, 1); OrthancStone::GeometryToolbox::AlignVectorsWithRotation(r, a, b); ASSERT_TRUE(OrthancStone::LinearAlgebra::IsRotationMatrix(r)); ASSERT_TRUE(IsEqualRotationVector(OrthancStone::LinearAlgebra::Product(r, a), b)); OrthancStone::LinearAlgebra::AssignVector(a, 0, 0, 1); OrthancStone::LinearAlgebra::AssignVector(b, 0, 0, 1); OrthancStone::GeometryToolbox::AlignVectorsWithRotation(r, a, b); ASSERT_TRUE(OrthancStone::LinearAlgebra::IsRotationMatrix(r)); ASSERT_TRUE(IsEqualRotationVector(OrthancStone::LinearAlgebra::Product(r, a), b)); OrthancStone::LinearAlgebra::AssignVector(a, 0, 0, 0); OrthancStone::LinearAlgebra::AssignVector(b, 0, 0, 1); ASSERT_THROW(OrthancStone::GeometryToolbox::AlignVectorsWithRotation(r, a, b), Orthanc::OrthancException); // TODO: Deal with opposite vectors /* OrthancStone::LinearAlgebra::AssignVector(a, 0, 0, -1); OrthancStone::LinearAlgebra::AssignVector(b, 0, 0, 1); OrthancStone::GeometryToolbox::AlignVectorsWithRotation(r, a, b); OrthancStone::LinearAlgebra::Print(r); OrthancStone::LinearAlgebra::Print(boost::numeric::ublas::prod(r, a)); */ } TEST(MessagingToolbox, ParseJson) { Json::Value response; std::string source = "{\"command\":\"panel:takeDarkImage\",\"commandType\":\"simple\",\"args\":{}}"; ASSERT_TRUE(Deprecated::MessagingToolbox::ParseJson(response, source.c_str(), source.size())); } static bool IsEqualVectorL1(OrthancStone::Vector a, OrthancStone::Vector b) { if (a.size() != b.size()) { return false; } else { for (size_t i = 0; i < a.size(); i++) { if (!OrthancStone::LinearAlgebra::IsNear(a[i], b[i], 0.0001)) { return false; } } return true; } } TEST(VolumeImageGeometry, Basic) { using namespace OrthancStone; VolumeImageGeometry g; g.SetSizeInVoxels(10, 20, 30); g.SetVoxelDimensions(1, 2, 3); Vector p = g.GetCoordinates(0, 0, 0); ASSERT_EQ(3u, p.size()); ASSERT_DOUBLE_EQ(-1.0 / 2.0, p[0]); ASSERT_DOUBLE_EQ(-2.0 / 2.0, p[1]); ASSERT_DOUBLE_EQ(-3.0 / 2.0, p[2]); p = g.GetCoordinates(1, 1, 1); ASSERT_DOUBLE_EQ(-1.0 / 2.0 + 10.0 * 1.0, p[0]); ASSERT_DOUBLE_EQ(-2.0 / 2.0 + 20.0 * 2.0, p[1]); ASSERT_DOUBLE_EQ(-3.0 / 2.0 + 30.0 * 3.0, p[2]); VolumeProjection proj; ASSERT_TRUE(g.DetectProjection(proj, g.GetAxialGeometry().GetNormal())); ASSERT_EQ(VolumeProjection_Axial, proj); ASSERT_TRUE(g.DetectProjection(proj, g.GetCoronalGeometry().GetNormal())); ASSERT_EQ(VolumeProjection_Coronal, proj); ASSERT_TRUE(g.DetectProjection(proj, g.GetSagittalGeometry().GetNormal())); ASSERT_EQ(VolumeProjection_Sagittal, proj); ASSERT_EQ(10u, g.GetProjectionWidth(VolumeProjection_Axial)); ASSERT_EQ(20u, g.GetProjectionHeight(VolumeProjection_Axial)); ASSERT_EQ(30u, g.GetProjectionDepth(VolumeProjection_Axial)); ASSERT_EQ(10u, g.GetProjectionWidth(VolumeProjection_Coronal)); ASSERT_EQ(30u, g.GetProjectionHeight(VolumeProjection_Coronal)); ASSERT_EQ(20u, g.GetProjectionDepth(VolumeProjection_Coronal)); ASSERT_EQ(20u, g.GetProjectionWidth(VolumeProjection_Sagittal)); ASSERT_EQ(30u, g.GetProjectionHeight(VolumeProjection_Sagittal)); ASSERT_EQ(10u, g.GetProjectionDepth(VolumeProjection_Sagittal)); p = g.GetVoxelDimensions(VolumeProjection_Axial); ASSERT_EQ(3u, p.size()); ASSERT_DOUBLE_EQ(1, p[0]); ASSERT_DOUBLE_EQ(2, p[1]); ASSERT_DOUBLE_EQ(3, p[2]); p = g.GetVoxelDimensions(VolumeProjection_Coronal); ASSERT_EQ(3u, p.size()); ASSERT_DOUBLE_EQ(1, p[0]); ASSERT_DOUBLE_EQ(3, p[1]); ASSERT_DOUBLE_EQ(2, p[2]); p = g.GetVoxelDimensions(VolumeProjection_Sagittal); ASSERT_EQ(3u, p.size()); ASSERT_DOUBLE_EQ(2, p[0]); ASSERT_DOUBLE_EQ(3, p[1]); ASSERT_DOUBLE_EQ(1, p[2]); // Loop over all the voxels of the volume for (unsigned int z = 0; z < g.GetDepth(); z++) { const float zz = (0.5f + static_cast<float>(z)) / static_cast<float>(g.GetDepth()); // Z-center of the voxel for (unsigned int y = 0; y < g.GetHeight(); y++) { const float yy = (0.5f + static_cast<float>(y)) / static_cast<float>(g.GetHeight()); // Y-center of the voxel for (unsigned int x = 0; x < g.GetWidth(); x++) { const float xx = (0.5f + static_cast<float>(x)) / static_cast<float>(g.GetWidth()); // X-center of the voxel const float sx = 1.0f; const float sy = 2.0f; const float sz = 3.0f; Vector p = g.GetCoordinates(xx, yy, zz); Vector q = (g.GetAxialGeometry().MapSliceToWorldCoordinates( static_cast<double>(x) * sx, static_cast<double>(y) * sy) + z * sz * g.GetAxialGeometry().GetNormal()); ASSERT_TRUE(IsEqualVectorL1(p, q)); q = (g.GetCoronalGeometry().MapSliceToWorldCoordinates( static_cast<double>(x) * sx, static_cast<double>(g.GetDepth() - 1 - z) * sz) + y * sy * g.GetCoronalGeometry().GetNormal()); ASSERT_TRUE(IsEqualVectorL1(p, q)); /** * WARNING: In sagittal geometry, the normal points to * REDUCING X-axis in the 3D world. This is necessary to keep * the right-hand coordinate system. Hence the "-". **/ q = (g.GetSagittalGeometry().MapSliceToWorldCoordinates( static_cast<double>(y) * sy, static_cast<double>(g.GetDepth() - 1 - z) * sz) + x * sx * (-g.GetSagittalGeometry().GetNormal())); ASSERT_TRUE(IsEqualVectorL1(p, q)); } } } ASSERT_EQ(0, (int) VolumeProjection_Axial); ASSERT_EQ(1, (int) VolumeProjection_Coronal); ASSERT_EQ(2, (int) VolumeProjection_Sagittal); for (int p = 0; p < 3; p++) { VolumeProjection projection = (VolumeProjection) p; const CoordinateSystem3D& s = g.GetProjectionGeometry(projection); ASSERT_THROW(g.GetProjectionSlice(projection, g.GetProjectionDepth(projection)), Orthanc::OrthancException); for (unsigned int i = 0; i < g.GetProjectionDepth(projection); i++) { CoordinateSystem3D plane = g.GetProjectionSlice(projection, i); if (projection == VolumeProjection_Sagittal) { ASSERT_TRUE(IsEqualVectorL1(plane.GetOrigin(), s.GetOrigin() + static_cast<double>(i) * (-s.GetNormal()) * g.GetVoxelDimensions(projection)[2])); } else { ASSERT_TRUE(IsEqualVectorL1(plane.GetOrigin(), s.GetOrigin() + static_cast<double>(i) * s.GetNormal() * g.GetVoxelDimensions(projection)[2])); } ASSERT_TRUE(IsEqualVectorL1(plane.GetAxisX(), s.GetAxisX())); ASSERT_TRUE(IsEqualVectorL1(plane.GetAxisY(), s.GetAxisY())); unsigned int slice; VolumeProjection q; ASSERT_TRUE(g.DetectSlice(q, slice, plane)); ASSERT_EQ(projection, q); ASSERT_EQ(i, slice); } } } TEST(LinearAlgebra, ParseVectorLocale) { OrthancStone::Vector v; ASSERT_TRUE(OrthancStone::LinearAlgebra::ParseVector(v, "1.2")); ASSERT_EQ(1u, v.size()); ASSERT_FLOAT_EQ(1.2f, v[0]); ASSERT_TRUE(OrthancStone::LinearAlgebra::ParseVector(v, "-1.2e+2")); ASSERT_EQ(1u, v.size()); ASSERT_FLOAT_EQ(-120.0f, v[0]); ASSERT_TRUE(OrthancStone::LinearAlgebra::ParseVector(v, "-1e-2\\2")); ASSERT_EQ(2u, v.size()); ASSERT_FLOAT_EQ(-0.01f, v[0]); ASSERT_FLOAT_EQ(2.0f, v[1]); ASSERT_TRUE(OrthancStone::LinearAlgebra::ParseVector(v, "1.3671875\\1.3671875")); ASSERT_EQ(2u, v.size()); ASSERT_FLOAT_EQ(1.3671875, v[0]); ASSERT_FLOAT_EQ(1.3671875, v[1]); } int main(int argc, char **argv) { Orthanc::Logging::Initialize(); Orthanc::Logging::EnableInfoLevel(true); ::testing::InitGoogleTest(&argc, argv); int result = RUN_ALL_TESTS(); Orthanc::Logging::Finalize(); return result; }