Mercurial > hg > orthanc-stone
view Framework/Toolbox/AffineTransform2D.cpp @ 1114:33b0a762e98a toa2019110401
Added support for signed 16-bit pixels/voxels in multiframe loader
author | Benjamin Golinvaux <bgo@osimis.io> |
---|---|
date | Mon, 04 Nov 2019 15:11:23 +0100 |
parents | 7912de3a15e0 |
children | 69177b10e2b9 0ca50d275b9a |
line wrap: on
line source
/** * Stone of Orthanc * Copyright (C) 2012-2016 Sebastien Jodogne, Medical Physics * Department, University Hospital of Liege, Belgium * Copyright (C) 2017-2019 Osimis S.A., Belgium * * This program is free software: you can redistribute it and/or * modify it under the terms of the GNU Affero General Public License * as published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. **/ #include "AffineTransform2D.h" #include "ImageGeometry.h" #include <Core/Logging.h> #include <Core/OrthancException.h> namespace OrthancStone { AffineTransform2D::AffineTransform2D() : matrix_(LinearAlgebra::IdentityMatrix(3)) { } AffineTransform2D::AffineTransform2D(const Matrix& m) { if (m.size1() != 3 || m.size2() != 3) { throw Orthanc::OrthancException(Orthanc::ErrorCode_IncompatibleImageSize); } if (!LinearAlgebra::IsCloseToZero(m(2, 0)) || !LinearAlgebra::IsCloseToZero(m(2, 1)) || LinearAlgebra::IsCloseToZero(m(2, 2))) { LOG(ERROR) << "Cannot setup an AffineTransform2D with perspective effects"; throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange); } matrix_ = m / m(2, 2); } void AffineTransform2D::Apply(double& x /* inout */, double& y /* inout */) const { Vector p; LinearAlgebra::AssignVector(p, x, y, 1); Vector q = LinearAlgebra::Product(matrix_, p); if (!LinearAlgebra::IsNear(q[2], 1.0)) { throw Orthanc::OrthancException(Orthanc::ErrorCode_InternalError); } else { x = q[0]; y = q[1]; } } void AffineTransform2D::Apply(Orthanc::ImageAccessor& target, const Orthanc::ImageAccessor& source, ImageInterpolation interpolation, bool clear) const { assert(LinearAlgebra::IsNear(matrix_(2, 0), 0) && LinearAlgebra::IsNear(matrix_(2, 1), 0) && LinearAlgebra::IsNear(matrix_(2, 2), 1)); ApplyAffineTransform(target, source, matrix_(0, 0), matrix_(0, 1), matrix_(0, 2), matrix_(1, 0), matrix_(1, 1), matrix_(1, 2), interpolation, clear); } void AffineTransform2D::ConvertToOpenGLMatrix(float target[16], unsigned int canvasWidth, unsigned int canvasHeight) const { const AffineTransform2D t = AffineTransform2D::Combine( CreateOpenGLClipspace(canvasWidth, canvasHeight), *this); const Matrix source = t.GetHomogeneousMatrix(); if (source.size1() != 3 || source.size2() != 3) { throw Orthanc::OrthancException(Orthanc::ErrorCode_InternalError); } // "z" must be in the [-1,1] range, otherwise the texture does not show up float z = 0; // Embed the 3x3 affine transform of the 2D plane into a 4x4 // matrix (3D) for OpenGL. The matrix must be transposed. target[0] = static_cast<float>(source(0, 0)); target[1] = static_cast<float>(source(1, 0)); target[2] = 0; target[3] = static_cast<float>(source(2, 0)); target[4] = static_cast<float>(source(0, 1)); target[5] = static_cast<float>(source(1, 1)); target[6] = 0; target[7] = static_cast<float>(source(2, 1)); target[8] = 0; target[9] = 0; target[10] = -1; target[11] = 0; target[12] = static_cast<float>(source(0, 2)); target[13] = static_cast<float>(source(1, 2)); target[14] = -z; target[15] = static_cast<float>(source(2, 2)); } double AffineTransform2D::ComputeZoom() const { // Compute the length of the (0,0)-(1,1) diagonal (whose // length is sqrt(2)) instead of the (0,0)-(1,0) unit segment, // in order to cope with possible anisotropic zooming double x1 = 0; double y1 = 0; Apply(x1, y1); double x2 = 1; double y2 = 1; Apply(x2, y2); double dx = x2 - x1; double dy = y2 - y1; double zoom = sqrt(dx * dx + dy * dy) / sqrt(2.0); if (LinearAlgebra::IsCloseToZero(zoom)) { return 1; // Default value if transform is ill-conditioned } else { return zoom; } } AffineTransform2D AffineTransform2D::Invert(const AffineTransform2D& a) { AffineTransform2D t; LinearAlgebra::InvertMatrix(t.matrix_, a.matrix_); return t; } AffineTransform2D AffineTransform2D::Combine(const AffineTransform2D& a, const AffineTransform2D& b) { return AffineTransform2D(LinearAlgebra::Product(a.GetHomogeneousMatrix(), b.GetHomogeneousMatrix())); } AffineTransform2D AffineTransform2D::Combine(const AffineTransform2D& a, const AffineTransform2D& b, const AffineTransform2D& c) { return AffineTransform2D(LinearAlgebra::Product(a.GetHomogeneousMatrix(), b.GetHomogeneousMatrix(), c.GetHomogeneousMatrix())); } AffineTransform2D AffineTransform2D::Combine(const AffineTransform2D& a, const AffineTransform2D& b, const AffineTransform2D& c, const AffineTransform2D& d) { return AffineTransform2D(LinearAlgebra::Product(a.GetHomogeneousMatrix(), b.GetHomogeneousMatrix(), c.GetHomogeneousMatrix(), d.GetHomogeneousMatrix())); } AffineTransform2D AffineTransform2D::Combine(const AffineTransform2D& a, const AffineTransform2D& b, const AffineTransform2D& c, const AffineTransform2D& d, const AffineTransform2D& e) { return AffineTransform2D(LinearAlgebra::Product(a.GetHomogeneousMatrix(), b.GetHomogeneousMatrix(), c.GetHomogeneousMatrix(), d.GetHomogeneousMatrix(), e.GetHomogeneousMatrix())); } AffineTransform2D AffineTransform2D::CreateOffset(double dx, double dy) { AffineTransform2D t; t.matrix_(0, 2) = dx; t.matrix_(1, 2) = dy; return t; } AffineTransform2D AffineTransform2D::CreateScaling(double sx, double sy) { AffineTransform2D t; t.matrix_(0, 0) = sx; t.matrix_(1, 1) = sy; return t; } AffineTransform2D AffineTransform2D::CreateRotation(double angle) { double cosine = cos(angle); double sine = sin(angle); AffineTransform2D t; t.matrix_(0, 0) = cosine; t.matrix_(0, 1) = -sine; t.matrix_(1, 0) = sine; t.matrix_(1, 1) = cosine; return t; } AffineTransform2D AffineTransform2D::CreateOpenGLClipspace(unsigned int canvasWidth, unsigned int canvasHeight) { AffineTransform2D t; t.matrix_(0, 0) = 2.0 / static_cast<double>(canvasWidth); t.matrix_(0, 2) = -1.0; t.matrix_(1, 1) = -2.0 / static_cast<double>(canvasHeight); t.matrix_(1, 2) = 1.0; return t; } }