Mercurial > hg > orthanc-stone
view Framework/Toolbox/GeometryToolbox.cpp @ 19:332328330083
sync
author | Sebastien Jodogne <s.jodogne@gmail.com> |
---|---|
date | Wed, 16 Nov 2016 12:36:18 +0100 |
parents | ff1e935768e7 |
children | 517c46f527cd |
line wrap: on
line source
/** * Stone of Orthanc * Copyright (C) 2012-2016 Sebastien Jodogne, Medical Physics * Department, University Hospital of Liege, Belgium * * This program is free software: you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * In addition, as a special exception, the copyright holders of this * program give permission to link the code of its release with the * OpenSSL project's "OpenSSL" library (or with modified versions of it * that use the same license as the "OpenSSL" library), and distribute * the linked executables. You must obey the GNU General Public License * in all respects for all of the code used other than "OpenSSL". If you * modify file(s) with this exception, you may extend this exception to * your version of the file(s), but you are not obligated to do so. If * you do not wish to do so, delete this exception statement from your * version. If you delete this exception statement from all source files * in the program, then also delete it here. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. **/ #include "GeometryToolbox.h" #include "../../Resources/Orthanc/Core/OrthancException.h" #include "../../Resources/Orthanc/Core/Toolbox.h" #include <stdio.h> #include <boost/lexical_cast.hpp> namespace OrthancStone { namespace GeometryToolbox { void Print(const Vector& v) { for (size_t i = 0; i < v.size(); i++) { printf("%8.2f\n", v[i]); } printf("\n"); } bool ParseVector(Vector& target, const std::string& value) { std::vector<std::string> items; Orthanc::Toolbox::TokenizeString(items, value, '\\'); target.resize(items.size()); for (size_t i = 0; i < items.size(); i++) { try { target[i] = boost::lexical_cast<double>(Orthanc::Toolbox::StripSpaces(items[i])); } catch (boost::bad_lexical_cast&) { target.clear(); return false; } } return true; } void AssignVector(Vector& v, double v1, double v2) { v.resize(2); v[0] = v1; v[1] = v2; } void AssignVector(Vector& v, double v1, double v2, double v3) { v.resize(3); v[0] = v1; v[1] = v2; v[2] = v3; } bool IsNear(double x, double y) { // As most input is read as single-precision numbers, we take the // epsilon machine for float32 into consideration to compare numbers return IsNear(x, y, 10.0 * std::numeric_limits<float>::epsilon()); } void NormalizeVector(Vector& u) { double norm = boost::numeric::ublas::norm_2(u); if (!IsCloseToZero(norm)) { u = u / norm; } } void CrossProduct(Vector& result, const Vector& u, const Vector& v) { if (u.size() != 3 || v.size() != 3) { throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange); } result.resize(3); result[0] = u[1] * v[2] - u[2] * v[1]; result[1] = u[2] * v[0] - u[0] * v[2]; result[2] = u[0] * v[1] - u[1] * v[0]; } void ProjectPointOntoPlane(Vector& result, const Vector& point, const Vector& planeNormal, const Vector& planeOrigin) { double norm = boost::numeric::ublas::norm_2(planeNormal); if (IsCloseToZero(norm)) { // Division by zero throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange); } // Make sure the norm of the normal is 1 Vector n; n = planeNormal / norm; // Algebraic form of line–plane intersection, where the line passes // through "point" along the direction "normal" (thus, l == n) // https://en.wikipedia.org/wiki/Line%E2%80%93plane_intersection#Algebraic_form result = boost::numeric::ublas::inner_prod(planeOrigin - point, n) * n + point; } bool IsParallelOrOpposite(bool& isOpposite, const Vector& u, const Vector& v) { // The dot product of the two vectors gives the cosine of the angle // between the vectors // https://en.wikipedia.org/wiki/Dot_product double normU = boost::numeric::ublas::norm_2(u); double normV = boost::numeric::ublas::norm_2(v); if (IsCloseToZero(normU) || IsCloseToZero(normV)) { return false; } double cosAngle = boost::numeric::ublas::inner_prod(u, v) / (normU * normV); // The angle must be zero, so the cosine must be almost equal to // cos(0) == 1 (or cos(180) == -1 if allowOppositeDirection == true) if (IsCloseToZero(cosAngle - 1.0)) { isOpposite = false; return true; } else if (IsCloseToZero(fabs(cosAngle) - 1.0)) { isOpposite = true; return true; } else { return false; } } bool IsParallel(const Vector& u, const Vector& v) { bool isOpposite; return (IsParallelOrOpposite(isOpposite, u, v) && !isOpposite); } bool IntersectTwoPlanes(Vector& p, Vector& direction, const Vector& origin1, const Vector& normal1, const Vector& origin2, const Vector& normal2) { // This is "Intersection of 2 Planes", possibility "(C) 3 Plane // Intersect Point" of: // http://geomalgorithms.com/a05-_intersect-1.html // The direction of the line of intersection is orthogonal to the // normal of both planes CrossProduct(direction, normal1, normal2); double norm = boost::numeric::ublas::norm_2(direction); if (IsCloseToZero(norm)) { // The two planes are parallel or coincident return false; } double d1 = -boost::numeric::ublas::inner_prod(normal1, origin1); double d2 = -boost::numeric::ublas::inner_prod(normal2, origin2); Vector tmp = d2 * normal1 - d1 * normal2; CrossProduct(p, tmp, direction); p /= norm; return true; } bool ClipLineToRectangle(double& x1, // Coordinates of the clipped line (out) double& y1, double& x2, double& y2, const double ax, // Two points defining the line (in) const double ay, const double bx, const double by, const double& xmin, // Coordinates of the rectangle (in) const double& ymin, const double& xmax, const double& ymax) { // This is Skala algorithm for rectangles, "A new approach to line // and line segment clipping in homogeneous coordinates" // (2005). This is a direct, non-optimized translation of Algorithm // 2 in the paper. static uint8_t tab1[16] = { 255 /* none */, 0, 0, 1, 1, 255 /* na */, 0, 2, 2, 0, 255 /* na */, 1, 1, 0, 0, 255 /* none */ }; static uint8_t tab2[16] = { 255 /* none */, 3, 1, 3, 2, 255 /* na */, 2, 3, 3, 2, 255 /* na */, 2, 3, 1, 3, 255 /* none */ }; // Create the coordinates of the rectangle Vector x[4]; AssignVector(x[0], xmin, ymin, 1.0); AssignVector(x[1], xmax, ymin, 1.0); AssignVector(x[2], xmax, ymax, 1.0); AssignVector(x[3], xmin, ymax, 1.0); // Move to homogoneous coordinates in 2D Vector p; { Vector a, b; AssignVector(a, ax, ay, 1.0); AssignVector(b, bx, by, 1.0); CrossProduct(p, a, b); } uint8_t c = 0; for (unsigned int k = 0; k < 4; k++) { if (boost::numeric::ublas::inner_prod(p, x[k]) >= 0) { c |= (1 << k); } } assert(c < 16); uint8_t i = tab1[c]; uint8_t j = tab2[c]; if (i == 255 || j == 255) { return false; // No intersection } else { Vector a, b, e; CrossProduct(e, x[i], x[(i + 1) % 4]); CrossProduct(a, p, e); CrossProduct(e, x[j], x[(j + 1) % 4]); CrossProduct(b, p, e); // Go back to non-homogeneous coordinates x1 = a[0] / a[2]; y1 = a[1] / a[2]; x2 = b[0] / b[2]; y2 = b[1] / b[2]; return true; } } } }