Mercurial > hg > orthanc-stone
view OrthancStone/Sources/Volumes/VolumeReslicer.cpp @ 2153:32bfccdc030f
consistency in the way URLs are concatenated
author | Sebastien Jodogne <s.jodogne@gmail.com> |
---|---|
date | Wed, 25 Sep 2024 18:09:24 +0200 |
parents | 16c01cc201e7 |
children |
line wrap: on
line source
/** * Stone of Orthanc * Copyright (C) 2012-2016 Sebastien Jodogne, Medical Physics * Department, University Hospital of Liege, Belgium * Copyright (C) 2017-2023 Osimis S.A., Belgium * Copyright (C) 2021-2024 Sebastien Jodogne, ICTEAM UCLouvain, Belgium * * This program is free software: you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * as published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program. If not, see * <http://www.gnu.org/licenses/>. **/ #include "VolumeReslicer.h" #include "../Toolbox/GeometryToolbox.h" #include "../Toolbox/SubvoxelReader.h" #include <Images/ImageTraits.h> #include <Logging.h> #include <OrthancException.h> #include <boost/math/special_functions/round.hpp> namespace OrthancStone { // Anonymous namespace to avoid clashes between compilation modules namespace { enum TransferFunction { TransferFunction_Copy, TransferFunction_Float, TransferFunction_Linear }; template <Orthanc::PixelFormat InputFormat, Orthanc::PixelFormat OutputFormat, ImageInterpolation Interpolation, TransferFunction Function> class PixelShader; template <Orthanc::PixelFormat Format> class PixelShader<Format, Format, ImageInterpolation_Nearest, TransferFunction_Copy> { private: typedef SubvoxelReader<Format, ImageInterpolation_Nearest> VoxelReader; typedef Orthanc::PixelTraits<Format> PixelWriter; VoxelReader reader_; public: PixelShader(const ImageBuffer3D& image, float /* scaling */, float /* offset */) : reader_(image) { } ORTHANC_FORCE_INLINE void Apply(typename PixelWriter::PixelType* pixel, float volumeX, float volumeY, float volumeZ) { typename VoxelReader::PixelType value; if (!reader_.GetValue(value, volumeX, volumeY, volumeZ)) { VoxelReader::Traits::SetMinValue(value); } *pixel = value; } }; template <Orthanc::PixelFormat InputFormat, Orthanc::PixelFormat OutputFormat> class PixelShader<InputFormat, OutputFormat, ImageInterpolation_Nearest, TransferFunction_Copy> { private: typedef SubvoxelReader<InputFormat, ImageInterpolation_Nearest> VoxelReader; typedef Orthanc::PixelTraits<OutputFormat> PixelWriter; VoxelReader reader_; public: PixelShader(const ImageBuffer3D& image, float /* scaling */, float /* offset */) : reader_(image) { } ORTHANC_FORCE_INLINE void Apply(typename PixelWriter::PixelType* pixel, float volumeX, float volumeY, float volumeZ) { typename VoxelReader::PixelType value; if (!reader_.GetValue(value, volumeX, volumeY, volumeZ)) { VoxelReader::Traits::SetMinValue(value); } PixelWriter::FloatToPixel(*pixel, VoxelReader::Traits::PixelToFloat(value)); } }; template <Orthanc::PixelFormat InputFormat, Orthanc::PixelFormat OutputFormat, ImageInterpolation Interpolation> class PixelShader<InputFormat, OutputFormat, Interpolation, TransferFunction_Float> { private: typedef SubvoxelReader<InputFormat, Interpolation> VoxelReader; typedef Orthanc::PixelTraits<OutputFormat> PixelWriter; VoxelReader reader_; float outOfVolume_; public: PixelShader(const ImageBuffer3D& image, float /* scaling */, float /* offset */) : reader_(image), outOfVolume_(static_cast<float>(std::numeric_limits<typename VoxelReader::PixelType>::min())) { } ORTHANC_FORCE_INLINE void Apply(typename PixelWriter::PixelType* pixel, float volumeX, float volumeY, float volumeZ) { float value; if (!reader_.GetFloatValue(value, volumeX, volumeY, volumeZ)) { value = outOfVolume_; } PixelWriter::FloatToPixel(*pixel, value); } }; template <Orthanc::PixelFormat InputFormat, Orthanc::PixelFormat OutputFormat, ImageInterpolation Interpolation> class PixelShader<InputFormat, OutputFormat, Interpolation, TransferFunction_Linear> { private: typedef SubvoxelReader<InputFormat, Interpolation> VoxelReader; typedef Orthanc::PixelTraits<OutputFormat> PixelWriter; VoxelReader reader_; float scaling_; float offset_; float outOfVolume_; public: PixelShader(const ImageBuffer3D& image, float scaling, float offset) : reader_(image), scaling_(scaling), offset_(offset), outOfVolume_(static_cast<float>(std::numeric_limits<typename VoxelReader::PixelType>::min())) { } ORTHANC_FORCE_INLINE void Apply(typename PixelWriter::PixelType* pixel, float volumeX, float volumeY, float volumeZ) { float value; if (reader_.GetFloatValue(value, volumeX, volumeY, volumeZ)) { value = scaling_ * value + offset_; } else { value = outOfVolume_; } PixelWriter::FloatToPixel(*pixel, value); } }; class FastRowIterator : public boost::noncopyable { private: float position_[3]; float offset_[3]; public: FastRowIterator(const Orthanc::ImageAccessor& slice, const Extent2D& extent, const CoordinateSystem3D& plane, const OrientedVolumeBoundingBox& box, unsigned int y) { const double width = static_cast<double>(slice.GetWidth()); const double height = static_cast<double>(slice.GetHeight()); assert(y < height); Vector q1 = plane.MapSliceToWorldCoordinates (extent.GetX1() + extent.GetWidth() * 0.5 / width, extent.GetY1() + extent.GetHeight() * (static_cast<double>(y) + 0.5) / height); Vector q2 = plane.MapSliceToWorldCoordinates (extent.GetX1() + extent.GetWidth() * (static_cast<double>(width - 1) + 0.5) / width, extent.GetY1() + extent.GetHeight() * (static_cast<double>(y) + 0.5) / height); Vector r1, r2; box.ToInternalCoordinates(r1, q1); box.ToInternalCoordinates(r2, q2); position_[0] = static_cast<float>(r1[0]); position_[1] = static_cast<float>(r1[1]); position_[2] = static_cast<float>(r1[2]); Vector tmp = (r2 - r1) / static_cast<double>(width - 1); offset_[0] = static_cast<float>(tmp[0]); offset_[1] = static_cast<float>(tmp[1]); offset_[2] = static_cast<float>(tmp[2]); } ORTHANC_FORCE_INLINE void Next() { position_[0] += offset_[0]; position_[1] += offset_[1]; position_[2] += offset_[2]; } ORTHANC_FORCE_INLINE void GetVolumeCoordinates(float& x, float& y, float& z) const { x = position_[0]; y = position_[1]; z = position_[2]; } }; class SlowRowIterator : public boost::noncopyable { private: const Orthanc::ImageAccessor& slice_; const Extent2D& extent_; const CoordinateSystem3D& plane_; const OrientedVolumeBoundingBox& box_; unsigned int x_; unsigned int y_; public: SlowRowIterator(const Orthanc::ImageAccessor& slice, const Extent2D& extent, const CoordinateSystem3D& plane, const OrientedVolumeBoundingBox& box, unsigned int y) : slice_(slice), extent_(extent), plane_(plane), box_(box), x_(0), y_(y) { assert(y_ < slice_.GetHeight()); } void Next() { x_++; } void GetVolumeCoordinates(float& x, float& y, float& z) const { assert(x_ < slice_.GetWidth()); const double width = static_cast<double>(slice_.GetWidth()); const double height = static_cast<double>(slice_.GetHeight()); Vector q = plane_.MapSliceToWorldCoordinates (extent_.GetX1() + extent_.GetWidth() * (static_cast<double>(x_) + 0.5) / width, extent_.GetY1() + extent_.GetHeight() * (static_cast<double>(y_) + 0.5) / height); Vector r; box_.ToInternalCoordinates(r, q); x = static_cast<float>(r[0]); y = static_cast<float>(r[1]); z = static_cast<float>(r[2]); } }; template <typename RowIterator, Orthanc::PixelFormat InputFormat, Orthanc::PixelFormat OutputFormat, ImageInterpolation Interpolation, TransferFunction Function> static void ProcessImage(Orthanc::ImageAccessor& slice, const Extent2D& extent, const ImageBuffer3D& source, const CoordinateSystem3D& plane, const OrientedVolumeBoundingBox& box, float scaling, float offset) { typedef PixelShader<InputFormat, OutputFormat, Interpolation, Function> Shader; const unsigned int outputWidth = slice.GetWidth(); const unsigned int outputHeight = slice.GetHeight(); const float sourceWidth = static_cast<float>(source.GetWidth()); const float sourceHeight = static_cast<float>(source.GetHeight()); const float sourceDepth = static_cast<float>(source.GetDepth()); Shader shader(source, scaling, offset); for (unsigned int y = 0; y < outputHeight; y++) { typedef typename Orthanc::ImageTraits<OutputFormat>::PixelType PixelType; PixelType* p = reinterpret_cast<PixelType*>(slice.GetRow(y)); RowIterator it(slice, extent, plane, box, y); for (unsigned int x = 0; x < outputWidth; x++, p++) { float volumeX, volumeY, volumeZ; it.GetVolumeCoordinates(volumeX, volumeY, volumeZ); shader.Apply(p, volumeX * sourceWidth, volumeY * sourceHeight, volumeZ * sourceDepth); it.Next(); } } } template <typename RowIterator, Orthanc::PixelFormat InputFormat, Orthanc::PixelFormat OutputFormat> static void ProcessImage(Orthanc::ImageAccessor& slice, const Extent2D& extent, const ImageBuffer3D& source, const CoordinateSystem3D& plane, const OrientedVolumeBoundingBox& box, ImageInterpolation interpolation, bool hasLinearFunction, float scaling, float offset) { if (hasLinearFunction) { switch (interpolation) { case ImageInterpolation_Nearest: ProcessImage<RowIterator, InputFormat, OutputFormat, ImageInterpolation_Nearest, TransferFunction_Linear> (slice, extent, source, plane, box, scaling, offset); break; case ImageInterpolation_Bilinear: ProcessImage<RowIterator, InputFormat, OutputFormat, ImageInterpolation_Bilinear, TransferFunction_Linear> (slice, extent, source, plane, box, scaling, offset); break; case ImageInterpolation_Trilinear: ProcessImage<RowIterator, InputFormat, OutputFormat, ImageInterpolation_Trilinear, TransferFunction_Linear> (slice, extent, source, plane, box, scaling, offset); break; default: throw Orthanc::OrthancException(Orthanc::ErrorCode_NotImplemented); } } else { switch (interpolation) { case ImageInterpolation_Nearest: ProcessImage<RowIterator, InputFormat, OutputFormat, ImageInterpolation_Nearest, TransferFunction_Copy> (slice, extent, source, plane, box, 0, 0); break; case ImageInterpolation_Bilinear: ProcessImage<RowIterator, InputFormat, OutputFormat, ImageInterpolation_Bilinear, TransferFunction_Float> (slice, extent, source, plane, box, 0, 0); break; case ImageInterpolation_Trilinear: ProcessImage<RowIterator, InputFormat, OutputFormat, ImageInterpolation_Trilinear, TransferFunction_Float> (slice, extent, source, plane, box, 0, 0); break; default: throw Orthanc::OrthancException(Orthanc::ErrorCode_NotImplemented); } } } template <typename RowIterator> static void ProcessImage(Orthanc::ImageAccessor& slice, const Extent2D& extent, const ImageBuffer3D& source, const CoordinateSystem3D& plane, const OrientedVolumeBoundingBox& box, ImageInterpolation interpolation, bool hasLinearFunction, float scaling, float offset) { if (source.GetFormat() == Orthanc::PixelFormat_Grayscale8 && slice.GetFormat() == Orthanc::PixelFormat_Grayscale8) { ProcessImage<RowIterator, Orthanc::PixelFormat_Grayscale8, Orthanc::PixelFormat_Grayscale8> (slice, extent, source, plane, box, interpolation, hasLinearFunction, scaling, offset); } else if (source.GetFormat() == Orthanc::PixelFormat_Grayscale16 && slice.GetFormat() == Orthanc::PixelFormat_Grayscale8) { ProcessImage<RowIterator, Orthanc::PixelFormat_Grayscale16, Orthanc::PixelFormat_Grayscale8> (slice, extent, source, plane, box, interpolation, hasLinearFunction, scaling, offset); } else if (source.GetFormat() == Orthanc::PixelFormat_Grayscale16 && slice.GetFormat() == Orthanc::PixelFormat_Grayscale16) { ProcessImage<RowIterator, Orthanc::PixelFormat_Grayscale16, Orthanc::PixelFormat_Grayscale16> (slice, extent, source, plane, box, interpolation, hasLinearFunction, scaling, offset); } else if (source.GetFormat() == Orthanc::PixelFormat_SignedGrayscale16 && slice.GetFormat() == Orthanc::PixelFormat_BGRA32) { ProcessImage<RowIterator, Orthanc::PixelFormat_SignedGrayscale16, Orthanc::PixelFormat_BGRA32> (slice, extent, source, plane, box, interpolation, hasLinearFunction, scaling, offset); } else if (source.GetFormat() == Orthanc::PixelFormat_Grayscale16 && slice.GetFormat() == Orthanc::PixelFormat_BGRA32) { ProcessImage<RowIterator, Orthanc::PixelFormat_Grayscale16, Orthanc::PixelFormat_BGRA32> (slice, extent, source, plane, box, interpolation, hasLinearFunction, scaling, offset); } else { throw Orthanc::OrthancException(Orthanc::ErrorCode_NotImplemented); } } } void VolumeReslicer::CheckIterators(const ImageBuffer3D& source, const CoordinateSystem3D& plane, const OrientedVolumeBoundingBox& box) const { const unsigned int width = slice_->GetWidth(); const unsigned int height = slice_->GetHeight(); for (unsigned int y = 0; y < height; y++) { FastRowIterator fast(*slice_, extent_, plane, box, y); SlowRowIterator slow(*slice_, extent_, plane, box, y); for (unsigned int x = 0; x < width; x++) { float px, py, pz; fast.GetVolumeCoordinates(px, py, pz); float qx, qy, qz; slow.GetVolumeCoordinates(qx, qy, qz); Vector d; LinearAlgebra::AssignVector(d, px - qx, py - qy, pz - qz); double norm = boost::numeric::ublas::norm_2(d); if (norm > 0.0001) { throw Orthanc::OrthancException(Orthanc::ErrorCode_InternalError); } fast.Next(); slow.Next(); } } } void VolumeReslicer::Reset() { success_ = false; extent_.Clear(); slice_.reset(NULL); } float VolumeReslicer::GetMinOutputValue() const { switch (outputFormat_) { case Orthanc::PixelFormat_Grayscale8: case Orthanc::PixelFormat_Grayscale16: case Orthanc::PixelFormat_BGRA32: return 0.0f; break; default: throw Orthanc::OrthancException(Orthanc::ErrorCode_NotImplemented); } } float VolumeReslicer::GetMaxOutputValue() const { switch (outputFormat_) { case Orthanc::PixelFormat_Grayscale8: case Orthanc::PixelFormat_BGRA32: return static_cast<float>(std::numeric_limits<uint8_t>::max()); break; case Orthanc::PixelFormat_Grayscale16: return static_cast<float>(std::numeric_limits<uint16_t>::max()); break; default: throw Orthanc::OrthancException(Orthanc::ErrorCode_NotImplemented); } } VolumeReslicer::VolumeReslicer() : outputFormat_(Orthanc::PixelFormat_Grayscale8), interpolation_(ImageInterpolation_Nearest), fastMode_(true), success_(false) { ResetLinearFunction(); } void VolumeReslicer::GetLinearFunction(float& scaling, float& offset) const { if (hasLinearFunction_) { scaling = scaling_; offset = offset_; } else { scaling = 1.0f; offset = 0.0f; } } void VolumeReslicer::ResetLinearFunction() { Reset(); hasLinearFunction_ = false; scaling_ = 1.0f; offset_ = 0.0f; } void VolumeReslicer::SetLinearFunction(float scaling, float offset) { Reset(); hasLinearFunction_ = true; scaling_ = scaling; offset_ = offset; } void VolumeReslicer::SetWindow(float low, float high) { //printf("Range in pixel values: %f->%f\n", low, high); float scaling = (GetMaxOutputValue() - GetMinOutputValue()) / (high - low); float offset = GetMinOutputValue() - scaling * low; SetLinearFunction(scaling, offset); /*float x = scaling_ * low + offset_; float y = scaling_ * high + offset_; printf("%f %f (should be %f->%f)\n", x, y, GetMinOutputValue(), GetMaxOutputValue());*/ } void VolumeReslicer::FitRange(const ImageBuffer3D& image) { float minInputValue, maxInputValue; if (!image.GetRange(minInputValue, maxInputValue) || maxInputValue < 1) { ResetLinearFunction(); } else { SetWindow(minInputValue, maxInputValue); } } void VolumeReslicer::SetWindowing(ImageWindowing windowing, const ImageBuffer3D& image, float rescaleSlope, float rescaleIntercept) { if (windowing == ImageWindowing_Custom) { throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange); } float center, width; ComputeWindowing(center, width, windowing, 0, 0); float a = (center - width / 2.0f - rescaleIntercept) / rescaleSlope; float b = (center + width / 2.0f - rescaleIntercept) / rescaleSlope; SetWindow(a, b); } void VolumeReslicer::SetOutputFormat(Orthanc::PixelFormat format) { if (format != Orthanc::PixelFormat_Grayscale8 && format != Orthanc::PixelFormat_Grayscale16 && format != Orthanc::PixelFormat_BGRA32) { throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange); } if (hasLinearFunction_) { LOG(WARNING) << "Calls to VolumeReslicer::SetOutputFormat() should be done before VolumeReslicer::FitRange()"; } outputFormat_ = format; Reset(); } void VolumeReslicer::SetInterpolation(ImageInterpolation interpolation) { if (interpolation != ImageInterpolation_Nearest && interpolation != ImageInterpolation_Bilinear && interpolation != ImageInterpolation_Trilinear) { throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange); } interpolation_ = interpolation; Reset(); } const Extent2D& VolumeReslicer::GetOutputExtent() const { if (success_) { return extent_; } else { LOG(ERROR) << "VolumeReslicer::GetOutputExtent(): (!success_)"; throw Orthanc::OrthancException(Orthanc::ErrorCode_BadSequenceOfCalls); } } const Orthanc::ImageAccessor& VolumeReslicer::GetOutputSlice() const { if (success_) { assert(slice_.get() != NULL); return *slice_; } else { LOG(ERROR) << "VolumeReslicer::GetOutputSlice(): (!success_)"; throw Orthanc::OrthancException(Orthanc::ErrorCode_BadSequenceOfCalls); } } Orthanc::ImageAccessor* VolumeReslicer::ReleaseOutputSlice() { if (success_) { assert(slice_.get() != NULL); success_ = false; return slice_.release(); } else { LOG(ERROR) << "VolumeReslicer::ReleaseOutputSlice(): (!success_)"; throw Orthanc::OrthancException(Orthanc::ErrorCode_BadSequenceOfCalls); } } void VolumeReslicer::Apply(const ImageBuffer3D& source, const VolumeImageGeometry& geometry, const CoordinateSystem3D& plane) { // Choose the default voxel size as the finest voxel dimension // of the source volumetric image const Vector dim = geometry.GetVoxelDimensions(VolumeProjection_Axial); double voxelSize = dim[0]; if (dim[1] < voxelSize) { voxelSize = dim[1]; } if (dim[2] < voxelSize) { voxelSize = dim[2]; } if (voxelSize <= 0) { throw Orthanc::OrthancException(Orthanc::ErrorCode_InternalError); } Apply(source, geometry, plane, voxelSize); } void VolumeReslicer::Apply(const ImageBuffer3D& source, const VolumeImageGeometry& geometry, const CoordinateSystem3D& plane, double voxelSize) { Reset(); pixelSpacing_ = voxelSize; // Firstly, compute the intersection of the source volumetric // image with the reslicing plane. This leads to a polygon with 3 // to 6 vertices. We compute the extent of the intersection // polygon, with respect to the coordinate system of the reslicing // plane. OrientedVolumeBoundingBox box(geometry); if (!box.ComputeExtent(extent_, plane)) { // The plane does not intersect with the bounding box of the volume slice_.reset(new Orthanc::Image(outputFormat_, 0, 0, false)); success_ = true; return; } // Secondly, the extent together with the voxel size gives the // size of the output image unsigned int width = boost::math::iround(extent_.GetWidth() / voxelSize); unsigned int height = boost::math::iround(extent_.GetHeight() / voxelSize); slice_.reset(new Orthanc::Image(outputFormat_, width, height, false)); //CheckIterators(source, plane, box); if (fastMode_) { ProcessImage<FastRowIterator>(*slice_, extent_, source, plane, box, interpolation_, hasLinearFunction_, scaling_, offset_); } else { ProcessImage<SlowRowIterator>(*slice_, extent_, source, plane, box, interpolation_, hasLinearFunction_, scaling_, offset_); } success_ = true; } double VolumeReslicer::GetPixelSpacing() const { if (success_) { return pixelSpacing_; } else { LOG(ERROR) << "VolumeReslicer::GetPixelSpacing(): (!success_)"; throw Orthanc::OrthancException(Orthanc::ErrorCode_BadSequenceOfCalls); } } }