Mercurial > hg > orthanc-stone
view OrthancStone/Sources/Scene2D/Internals/OpenGLInfoPanelRenderer.cpp @ 1849:023cce3d7844
introduction of the concept of "virtual series"
author | Sebastien Jodogne <s.jodogne@gmail.com> |
---|---|
date | Tue, 29 Jun 2021 12:12:46 +0200 |
parents | 9ac2a65d4172 |
children | 3889ae96d2e9 |
line wrap: on
line source
/** * Stone of Orthanc * Copyright (C) 2012-2016 Sebastien Jodogne, Medical Physics * Department, University Hospital of Liege, Belgium * Copyright (C) 2017-2021 Osimis S.A., Belgium * * This program is free software: you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * as published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program. If not, see * <http://www.gnu.org/licenses/>. **/ #include "OpenGLInfoPanelRenderer.h" namespace OrthancStone { namespace Internals { void OpenGLInfoPanelRenderer::LoadTexture(const InfoPanelSceneLayer& layer) { if (!context_.IsContextLost()) { context_.MakeCurrent(); texture_.reset(new OpenGL::OpenGLTexture(context_)); texture_->Load(layer.GetTexture(), layer.IsLinearInterpolation()); applySceneRotation_ = layer.ShouldApplySceneRotation(); anchor_ = layer.GetAnchor(); } } OpenGLInfoPanelRenderer::OpenGLInfoPanelRenderer(OpenGL::IOpenGLContext& context, OpenGLColorTextureProgram& program, const InfoPanelSceneLayer& layer) : context_(context), program_(program), anchor_(BitmapAnchor_TopLeft), applySceneRotation_(false) { LoadTexture(layer); } void OpenGLInfoPanelRenderer::Render(const AffineTransform2D& transform, unsigned int canvasWidth, unsigned int canvasHeight) { if (!context_.IsContextLost() && texture_.get() != NULL) { int dx = 0, dy = 0; InfoPanelSceneLayer::ComputeAnchorLocation( dx, dy, anchor_, texture_->GetWidth(), texture_->GetHeight(), canvasWidth, canvasHeight); // The position of this type of layer is layer: Ignore the // "transform" coming from the scene AffineTransform2D actualTransform = AffineTransform2D::CreateOffset(dx, dy); if (applySceneRotation_) { // the transformation is as follows: // - originally, the image is aligned so that its top left corner // is at 0,0 // - first, we translate the image by -w/2,-h/2 // - then we rotate it, so that the next rotation will make the // image rotate around its center. // - then, we translate the image by +w/2,+h/2 to put it // back in place // - the fourth and last transform is the one that brings the // image to its desired anchored location. int32_t halfWidth = static_cast<int32_t>(0.5 * texture_->GetWidth()); int32_t halfHeight= static_cast<int32_t>(0.5 * texture_->GetHeight()); AffineTransform2D translation1 = AffineTransform2D::CreateOffset(-halfWidth, -halfHeight); const Matrix& sceneTransformM = transform.GetHomogeneousMatrix(); Matrix r; Matrix q; LinearAlgebra::RQDecomposition3x3(r, q, sceneTransformM); // counterintuitively, q is the rotation and r is the upper // triangular AffineTransform2D rotation(q); AffineTransform2D translation2 = AffineTransform2D::CreateOffset(halfWidth, halfHeight); // please note that the last argument is the 1st applied // transformation (rationale: if arguments are a, b and c, then // the resulting matrix is a*b*c: // x2 = (a*b*c)*x1 = (a*(b*(c*x1))) (you can see that the result // of c*x1 is transformed by b, and the result of b*c*x1 is trans- // formed by a) actualTransform = AffineTransform2D::Combine(actualTransform, translation2, rotation, translation1); } program_.Apply(*texture_, actualTransform, canvasWidth, canvasHeight, true); } } } }