diff Framework/Toolbox/FiniteProjectiveCamera.cpp @ 161:197a5ddaf68c wasm

FiniteProjectiveCamera
author Sebastien Jodogne <s.jodogne@gmail.com>
date Wed, 14 Feb 2018 11:29:26 +0100
parents
children 45b03b04a777
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Framework/Toolbox/FiniteProjectiveCamera.cpp	Wed Feb 14 11:29:26 2018 +0100
@@ -0,0 +1,221 @@
+/**
+ * Stone of Orthanc
+ * Copyright (C) 2012-2016 Sebastien Jodogne, Medical Physics
+ * Department, University Hospital of Liege, Belgium
+ * Copyright (C) 2017-2018 Osimis S.A., Belgium
+ *
+ * This program is free software: you can redistribute it and/or
+ * modify it under the terms of the GNU Affero General Public License
+ * as published by the Free Software Foundation, either version 3 of
+ * the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Affero General Public License for more details.
+ * 
+ * You should have received a copy of the GNU Affero General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ **/
+
+
+#include "FiniteProjectiveCamera.h"
+
+#include <Core/Logging.h>
+#include <Core/OrthancException.h>
+
+namespace OrthancStone
+{
+  void FiniteProjectiveCamera::ComputeMInverse()
+  {
+    using namespace boost::numeric::ublas;
+
+    // inv(M) = inv(K * R) = inv(R) * inv(K) = R' * inv(K). This
+    // matrix is always invertible, by definition of finite
+    // projective cameras (page 157).
+    Matrix kinv;
+    LinearAlgebra::InvertUpperTriangularMatrix(kinv, k_);
+    minv_ = prod(trans(r_), kinv);
+  }
+
+    
+  void FiniteProjectiveCamera::Setup(const Matrix& k,
+                                     const Matrix& r,
+                                     const Vector& c)
+  {
+    using namespace boost::numeric::ublas;
+
+    if (k.size1() != 3 ||
+        k.size2() != 3 ||
+        !LinearAlgebra::IsCloseToZero(k(1, 0)) ||
+        !LinearAlgebra::IsCloseToZero(k(2, 0)) ||
+        !LinearAlgebra::IsCloseToZero(k(2, 1)))
+    {
+      LOG(ERROR) << "Invalid intrinsic parameters";
+      throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange);
+    }
+
+    if (r.size1() != 3 ||
+        r.size2() != 3)
+    {
+      LOG(ERROR) << "Invalid size for a 3D rotation matrix";
+      throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange);
+    }
+
+    if (!LinearAlgebra::IsRotationMatrix(r, 100.0 * std::numeric_limits<float>::epsilon()))
+    {
+      LOG(ERROR) << "Invalid rotation matrix";
+      throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange);
+    }
+
+    if (c.size() != 3)
+    {
+      LOG(ERROR) << "Invalid camera center";
+      throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange);
+    }
+
+    k_ = k;
+    r_ = r;
+    c_ = c;
+
+    ComputeMInverse();
+      
+    Matrix tmp = identity_matrix<double>(3);
+    tmp.resize(3, 4);
+    tmp(0, 3) = -c[0];
+    tmp(1, 3) = -c[1];
+    tmp(2, 3) = -c[2];
+
+    tmp = prod(r, tmp);
+    p_ = prod(k, tmp);
+  }
+
+    
+  void FiniteProjectiveCamera::Setup(const Matrix& p)
+  {
+    using namespace boost::numeric::ublas;
+
+    if (p.size1() != 3 ||
+        p.size2() != 4)
+    {
+      LOG(ERROR) << "Invalid camera matrix";
+      throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange);
+    }
+
+    p_ = p;
+
+    // M is the left 3x3 submatrix of "P"
+    Matrix m = p;
+    m.resize(3, 3);
+
+    // p4 is the last column of "P"
+    Vector p4(3);
+    p4[0] = p(0, 3);
+    p4[1] = p(1, 3);
+    p4[2] = p(2, 3);
+
+    // The RQ decomposition is explained on page 157
+    LinearAlgebra::RQDecomposition3x3(k_, r_, m);
+    ComputeMInverse();
+
+    c_ = prod(-minv_, p4);
+  }
+
+
+  FiniteProjectiveCamera::FiniteProjectiveCamera(const double k[9],
+                                                 const double r[9],
+                                                 const double c[3])
+  {
+    Matrix kk, rr;
+    Vector cc;
+
+    LinearAlgebra::FillMatrix(kk, 3, 3, k);
+    LinearAlgebra::FillMatrix(rr, 3, 3, r);
+    LinearAlgebra::FillVector(cc, 3, c);
+
+    Setup(kk, rr, cc);
+  }
+
+
+  FiniteProjectiveCamera::FiniteProjectiveCamera(const double p[12])
+  {
+    Matrix pp;
+    LinearAlgebra::FillMatrix(pp, 3, 4, p);
+    Setup(pp);
+  }
+
+
+  Vector FiniteProjectiveCamera::GetRayDirection(double x,
+                                                 double y) const
+  {
+    // This derives from Equation (6.14) on page 162, taking "mu =
+    // 1" and noticing that "-inv(M)*p4" corresponds to the camera
+    // center in finite projective cameras
+
+    // The (x,y) coordinates on the imaged plane, as an homogeneous vector
+    Vector xx(3);
+    xx[0] = x;
+    xx[1] = y;
+    xx[2] = 1.0;
+
+    return boost::numeric::ublas::prod(minv_, xx);
+  }
+
+
+
+  static Vector SetupApply(const Vector& v,
+                           bool infinityAllowed)
+  {
+    if (v.size() == 3)
+    {
+      // Vector "v" in non-homogeneous coordinates, add the homogeneous component
+      Vector vv;
+      LinearAlgebra::AssignVector(vv, v[0], v[1], v[2], 1.0);
+      return vv;
+    }
+    else if (v.size() == 4)
+    {
+      // Vector "v" is already in homogeneous coordinates
+
+      if (!infinityAllowed &&
+          LinearAlgebra::IsCloseToZero(v[3]))
+      {
+        LOG(ERROR) << "Cannot apply a finite projective camera to a "
+                   << "point at infinity with this method";
+        throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange);
+      }
+
+      return v;
+    }
+    else
+    {
+      LOG(ERROR) << "The input vector must represent a point in 3D";
+      throw Orthanc::OrthancException(Orthanc::ErrorCode_ParameterOutOfRange);
+    }
+  }
+
+  
+  void FiniteProjectiveCamera::ApplyFinite(double& x,
+                                           double& y,
+                                           const Vector& v) const
+  {
+    Vector p = boost::numeric::ublas::prod(p_, SetupApply(v, false));    
+
+    if (LinearAlgebra::IsCloseToZero(p[2]))
+    {
+      // Point at infinity: Should not happen with a finite input point
+      throw Orthanc::OrthancException(Orthanc::ErrorCode_InternalError);
+    }
+    else
+    {
+      x = p[0] / p[2];
+      y = p[1] / p[2];
+    }
+  }
+
+  
+  Vector FiniteProjectiveCamera::ApplyGeneral(const Vector& v) const
+  {
+    return boost::numeric::ublas::prod(p_, SetupApply(v, true));
+  }
+}