comparison UnitTestsSources/GeometryToolboxTests.cpp @ 1679:5b8b88e5bfd6

successfully running unit tests in WebAssembly
author Sebastien Jodogne <s.jodogne@gmail.com>
date Tue, 24 Nov 2020 12:59:10 +0100
parents
children 9ac2a65d4172
comparison
equal deleted inserted replaced
1678:1393e3393a0b 1679:5b8b88e5bfd6
1 /**
2 * Stone of Orthanc
3 * Copyright (C) 2012-2016 Sebastien Jodogne, Medical Physics
4 * Department, University Hospital of Liege, Belgium
5 * Copyright (C) 2017-2020 Osimis S.A., Belgium
6 *
7 * This program is free software: you can redistribute it and/or
8 * modify it under the terms of the GNU Affero General Public License
9 * as published by the Free Software Foundation, either version 3 of
10 * the License, or (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Affero General Public License for more details.
16 *
17 * You should have received a copy of the GNU Affero General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 **/
20
21
22 #include <gtest/gtest.h>
23
24 #include "../OrthancStone/Sources/Toolbox/FiniteProjectiveCamera.h"
25 #include "../OrthancStone/Sources/Toolbox/GenericToolbox.h"
26 #include "../OrthancStone/Sources/Toolbox/GeometryToolbox.h"
27
28 #include <Logging.h>
29 #include <OrthancException.h>
30
31 #include <boost/math/special_functions/round.hpp>
32
33
34 TEST(GeometryToolbox, Interpolation)
35 {
36 using namespace OrthancStone::GeometryToolbox;
37
38 // https://en.wikipedia.org/wiki/Bilinear_interpolation#Application_in_image_processing
39 ASSERT_DOUBLE_EQ(146.1f, ComputeBilinearInterpolationUnitSquare(0.5f, 0.2f, 91, 210, 162, 95));
40
41 ASSERT_DOUBLE_EQ(91, ComputeBilinearInterpolationUnitSquare(0, 0, 91, 210, 162, 95));
42 ASSERT_DOUBLE_EQ(210, ComputeBilinearInterpolationUnitSquare(1, 0, 91, 210, 162, 95));
43 ASSERT_DOUBLE_EQ(162, ComputeBilinearInterpolationUnitSquare(0, 1, 91, 210, 162, 95));
44 ASSERT_DOUBLE_EQ(95, ComputeBilinearInterpolationUnitSquare(1, 1, 91, 210, 162, 95));
45
46 ASSERT_DOUBLE_EQ(123.35f, ComputeTrilinearInterpolationUnitSquare
47 (0.5f, 0.2f, 0.7f,
48 91, 210, 162, 95,
49 51, 190, 80, 92));
50
51 ASSERT_DOUBLE_EQ(ComputeBilinearInterpolationUnitSquare(0.5f, 0.2f, 91, 210, 162, 95),
52 ComputeTrilinearInterpolationUnitSquare(0.5f, 0.2f, 0,
53 91, 210, 162, 95,
54 51, 190, 80, 92));
55
56 ASSERT_DOUBLE_EQ(ComputeBilinearInterpolationUnitSquare(0.5f, 0.2f, 51, 190, 80, 92),
57 ComputeTrilinearInterpolationUnitSquare(0.5f, 0.2f, 1,
58 91, 210, 162, 95,
59 51, 190, 80, 92));
60 }
61
62
63 static bool CompareMatrix(const OrthancStone::Matrix& a,
64 const OrthancStone::Matrix& b,
65 double threshold = 0.00000001)
66 {
67 if (a.size1() != b.size1() ||
68 a.size2() != b.size2())
69 {
70 return false;
71 }
72
73 for (size_t i = 0; i < a.size1(); i++)
74 {
75 for (size_t j = 0; j < a.size2(); j++)
76 {
77 if (fabs(a(i, j) - b(i, j)) > threshold)
78 {
79 LOG(ERROR) << "Too large difference in component ("
80 << i << "," << j << "): " << a(i,j) << " != " << b(i,j);
81 return false;
82 }
83 }
84 }
85
86 return true;
87 }
88
89
90 static bool CompareVector(const OrthancStone::Vector& a,
91 const OrthancStone::Vector& b,
92 double threshold = 0.00000001)
93 {
94 if (a.size() != b.size())
95 {
96 return false;
97 }
98
99 for (size_t i = 0; i < a.size(); i++)
100 {
101 if (fabs(a(i) - b(i)) > threshold)
102 {
103 LOG(ERROR) << "Too large difference in component "
104 << i << ": " << a(i) << " != " << b(i);
105 return false;
106 }
107 }
108
109 return true;
110 }
111
112
113
114 TEST(FiniteProjectiveCamera, Decomposition1)
115 {
116 // Example 6.2 of "Multiple View Geometry in Computer Vision - 2nd
117 // edition" (page 163)
118 const double p[12] = {
119 3.53553e+2, 3.39645e+2, 2.77744e+2, -1.44946e+6,
120 -1.03528e+2, 2.33212e+1, 4.59607e+2, -6.32525e+5,
121 7.07107e-1, -3.53553e-1, 6.12372e-1, -9.18559e+2
122 };
123
124 OrthancStone::FiniteProjectiveCamera camera(p);
125 ASSERT_EQ(3u, camera.GetMatrix().size1());
126 ASSERT_EQ(4u, camera.GetMatrix().size2());
127 ASSERT_EQ(3u, camera.GetIntrinsicParameters().size1());
128 ASSERT_EQ(3u, camera.GetIntrinsicParameters().size2());
129 ASSERT_EQ(3u, camera.GetRotation().size1());
130 ASSERT_EQ(3u, camera.GetRotation().size2());
131 ASSERT_EQ(3u, camera.GetCenter().size());
132
133 ASSERT_NEAR(1000.0, camera.GetCenter()[0], 0.01);
134 ASSERT_NEAR(2000.0, camera.GetCenter()[1], 0.01);
135 ASSERT_NEAR(1500.0, camera.GetCenter()[2], 0.01);
136
137 ASSERT_NEAR(468.2, camera.GetIntrinsicParameters() (0, 0), 0.1);
138 ASSERT_NEAR(91.2, camera.GetIntrinsicParameters() (0, 1), 0.1);
139 ASSERT_NEAR(300.0, camera.GetIntrinsicParameters() (0, 2), 0.1);
140 ASSERT_NEAR(427.2, camera.GetIntrinsicParameters() (1, 1), 0.1);
141 ASSERT_NEAR(200.0, camera.GetIntrinsicParameters() (1, 2), 0.1);
142 ASSERT_NEAR(1.0, camera.GetIntrinsicParameters() (2, 2), 0.1);
143
144 ASSERT_NEAR(0, camera.GetIntrinsicParameters() (1, 0), 0.0000001);
145 ASSERT_NEAR(0, camera.GetIntrinsicParameters() (2, 0), 0.0000001);
146 ASSERT_NEAR(0, camera.GetIntrinsicParameters() (2, 1), 0.0000001);
147
148 ASSERT_NEAR(0.41380, camera.GetRotation() (0, 0), 0.00001);
149 ASSERT_NEAR(0.90915, camera.GetRotation() (0, 1), 0.00001);
150 ASSERT_NEAR(0.04708, camera.GetRotation() (0, 2), 0.00001);
151 ASSERT_NEAR(-0.57338, camera.GetRotation() (1, 0), 0.00001);
152 ASSERT_NEAR(0.22011, camera.GetRotation() (1, 1), 0.00001);
153 ASSERT_NEAR(0.78917, camera.GetRotation() (1, 2), 0.00001);
154 ASSERT_NEAR(0.70711, camera.GetRotation() (2, 0), 0.00001);
155 ASSERT_NEAR(-0.35355, camera.GetRotation() (2, 1), 0.00001);
156 ASSERT_NEAR(0.61237, camera.GetRotation() (2, 2), 0.00001);
157
158 ASSERT_TRUE(OrthancStone::LinearAlgebra::IsRotationMatrix(camera.GetRotation()));
159
160 OrthancStone::FiniteProjectiveCamera camera2(camera.GetIntrinsicParameters(),
161 camera.GetRotation(),
162 camera.GetCenter());
163
164 ASSERT_TRUE(CompareMatrix(camera.GetMatrix(), camera2.GetMatrix()));
165 ASSERT_TRUE(CompareMatrix(camera.GetIntrinsicParameters(), camera2.GetIntrinsicParameters()));
166 ASSERT_TRUE(CompareMatrix(camera.GetRotation(), camera2.GetRotation()));
167 ASSERT_TRUE(CompareVector(camera.GetCenter(), camera2.GetCenter()));
168 }
169
170
171 TEST(FiniteProjectiveCamera, Decomposition2)
172 {
173 const double p[] = { 1188.111986, 580.205341, -808.445330, 128000.000000, -366.466264, 1446.510501, 418.499736, 128000.000000, -0.487118, 0.291726, -0.823172, 500.000000 };
174 const double k[] = { -1528.494743, 0.000000, 256.000000, 0.000000, 1528.494743, 256.000000, 0.000000, 0.000000, 1.000000 };
175 const double r[] = { -0.858893, -0.330733, 0.391047, -0.158171, 0.897503, 0.411668, -0.487118, 0.291726, -0.823172 };
176 const double c[] = { 243.558936, -145.863085, 411.585964 };
177
178 OrthancStone::FiniteProjectiveCamera camera(p);
179 ASSERT_TRUE(OrthancStone::LinearAlgebra::IsRotationMatrix(camera.GetRotation()));
180
181 OrthancStone::FiniteProjectiveCamera camera2(k, r, c);
182 ASSERT_TRUE(CompareMatrix(camera.GetMatrix(), camera2.GetMatrix(), 1));
183 ASSERT_TRUE(CompareMatrix(camera.GetIntrinsicParameters(), camera2.GetIntrinsicParameters(), 0.001));
184 ASSERT_TRUE(CompareMatrix(camera.GetRotation(), camera2.GetRotation(), 0.000001));
185 ASSERT_TRUE(CompareVector(camera.GetCenter(), camera2.GetCenter(), 0.0001));
186 }
187
188
189 TEST(FiniteProjectiveCamera, Decomposition3)
190 {
191 const double p[] = { 10, 0, 0, 0,
192 0, 20, 0, 0,
193 0, 0, 30, 0 };
194
195 OrthancStone::FiniteProjectiveCamera camera(p);
196 ASSERT_TRUE(OrthancStone::LinearAlgebra::IsRotationMatrix(camera.GetRotation()));
197 ASSERT_DOUBLE_EQ(10, camera.GetIntrinsicParameters() (0, 0));
198 ASSERT_DOUBLE_EQ(20, camera.GetIntrinsicParameters() (1, 1));
199 ASSERT_DOUBLE_EQ(30, camera.GetIntrinsicParameters() (2, 2));
200 ASSERT_DOUBLE_EQ(1, camera.GetRotation() (0, 0));
201 ASSERT_DOUBLE_EQ(1, camera.GetRotation() (1, 1));
202 ASSERT_DOUBLE_EQ(1, camera.GetRotation() (2, 2));
203 ASSERT_DOUBLE_EQ(0, camera.GetCenter() (0));
204 ASSERT_DOUBLE_EQ(0, camera.GetCenter() (1));
205 ASSERT_DOUBLE_EQ(0, camera.GetCenter() (2));
206 }
207
208
209 TEST(FiniteProjectiveCamera, Decomposition4)
210 {
211 const double p[] = { 1, 0, 0, 10,
212 0, 1, 0, 20,
213 0, 0, 1, 30 };
214
215 OrthancStone::FiniteProjectiveCamera camera(p);
216 ASSERT_TRUE(OrthancStone::LinearAlgebra::IsRotationMatrix(camera.GetRotation()));
217 ASSERT_DOUBLE_EQ(1, camera.GetIntrinsicParameters() (0, 0));
218 ASSERT_DOUBLE_EQ(1, camera.GetIntrinsicParameters() (1, 1));
219 ASSERT_DOUBLE_EQ(1, camera.GetIntrinsicParameters() (2, 2));
220 ASSERT_DOUBLE_EQ(1, camera.GetRotation() (0, 0));
221 ASSERT_DOUBLE_EQ(1, camera.GetRotation() (1, 1));
222 ASSERT_DOUBLE_EQ(1, camera.GetRotation() (2, 2));
223 ASSERT_DOUBLE_EQ(-10, camera.GetCenter() (0));
224 ASSERT_DOUBLE_EQ(-20, camera.GetCenter() (1));
225 ASSERT_DOUBLE_EQ(-30, camera.GetCenter() (2));
226 }
227
228
229 TEST(FiniteProjectiveCamera, Decomposition5)
230 {
231 const double p[] = { 0, 0, 10, 0,
232 0, 20, 0, 0,
233 30, 0, 0, 0 };
234
235 OrthancStone::FiniteProjectiveCamera camera(p);
236 ASSERT_TRUE(OrthancStone::LinearAlgebra::IsRotationMatrix(camera.GetRotation()));
237 ASSERT_DOUBLE_EQ(-10, camera.GetIntrinsicParameters() (0, 0));
238 ASSERT_DOUBLE_EQ(20, camera.GetIntrinsicParameters() (1, 1));
239 ASSERT_DOUBLE_EQ(30, camera.GetIntrinsicParameters() (2, 2));
240 ASSERT_DOUBLE_EQ(-1, camera.GetRotation() (0, 2));
241 ASSERT_DOUBLE_EQ(1, camera.GetRotation() (1, 1));
242 ASSERT_DOUBLE_EQ(1, camera.GetRotation() (2, 0));
243 ASSERT_DOUBLE_EQ(0, camera.GetCenter() (0));
244 ASSERT_DOUBLE_EQ(0, camera.GetCenter() (1));
245 ASSERT_DOUBLE_EQ(0, camera.GetCenter() (2));
246
247 OrthancStone::FiniteProjectiveCamera camera2(camera.GetIntrinsicParameters(),
248 camera.GetRotation(),
249 camera.GetCenter());
250 ASSERT_TRUE(CompareMatrix(camera.GetMatrix(), camera2.GetMatrix()));
251 ASSERT_TRUE(CompareMatrix(camera.GetIntrinsicParameters(), camera2.GetIntrinsicParameters()));
252 ASSERT_TRUE(CompareMatrix(camera.GetRotation(), camera2.GetRotation()));
253 ASSERT_TRUE(CompareVector(camera.GetCenter(), camera2.GetCenter()));
254 }
255
256
257 static double GetCosAngle(const OrthancStone::Vector& a,
258 const OrthancStone::Vector& b)
259 {
260 // Returns the cosine of the angle between two vectors
261 // https://en.wikipedia.org/wiki/Dot_product#Geometric_definition
262 return boost::numeric::ublas::inner_prod(a, b) /
263 (boost::numeric::ublas::norm_2(a) * boost::numeric::ublas::norm_2(b));
264 }
265
266
267 TEST(FiniteProjectiveCamera, Ray)
268 {
269 const double pp[] = { -1499.650894, 2954.618773, -259.737419, 637891.819097,
270 -2951.517707, -1501.019129, -285.785281, 637891.819097,
271 0.008528, 0.003067, -0.999959, 2491.764918 };
272
273 const OrthancStone::FiniteProjectiveCamera camera(pp);
274
275 ASSERT_NEAR(-21.2492, camera.GetCenter() (0), 0.0001);
276 ASSERT_NEAR(-7.64234, camera.GetCenter() (1), 0.00001);
277 ASSERT_NEAR(2491.66, camera.GetCenter() (2), 0.01);
278
279 // Image plane that led to these parameters, with principal point at
280 // (256,256). The image has dimensions 512x512.
281 OrthancStone::Vector o =
282 OrthancStone::LinearAlgebra::CreateVector(7.009620, 2.521030, -821.942000);
283 OrthancStone::Vector ax =
284 OrthancStone::LinearAlgebra::CreateVector(-0.453219, 0.891399, -0.001131);
285 OrthancStone::Vector ay =
286 OrthancStone::LinearAlgebra::CreateVector(-0.891359, -0.453210, -0.008992);
287
288 OrthancStone::CoordinateSystem3D imagePlane(o, ax, ay);
289
290 // Back-projection of the principal point
291 {
292 OrthancStone::Vector ray = camera.GetRayDirection(256, 256);
293
294 // The principal axis vector is orthogonal to the image plane
295 // (i.e. parallel to the plane normal), in the opposite direction
296 // ("-1" corresponds to "cos(pi)").
297 ASSERT_NEAR(-1, GetCosAngle(ray, imagePlane.GetNormal()), 0.0000001);
298
299 // Forward projection of principal axis, resulting in the principal point
300 double x, y;
301 camera.ApplyFinite(x, y, camera.GetCenter() - ray);
302
303 ASSERT_NEAR(256, x, 0.00001);
304 ASSERT_NEAR(256, y, 0.00001);
305 }
306
307 // Back-projection of the 4 corners of the image
308 std::vector<double> cx, cy;
309 cx.push_back(0);
310 cy.push_back(0);
311 cx.push_back(512);
312 cy.push_back(0);
313 cx.push_back(512);
314 cy.push_back(512);
315 cx.push_back(0);
316 cy.push_back(512);
317
318 bool first = true;
319 double angle;
320
321 for (size_t i = 0; i < cx.size(); i++)
322 {
323 OrthancStone::Vector ray = camera.GetRayDirection(cx[i], cy[i]);
324
325 // Check that the angle wrt. principal axis is the same for all
326 // the 4 corners
327 double a = GetCosAngle(ray, imagePlane.GetNormal());
328 if (first)
329 {
330 first = false;
331 angle = a;
332 }
333 else
334 {
335 ASSERT_NEAR(angle, a, 0.000001);
336 }
337
338 // Forward projection of the ray, going back to the original point
339 double x, y;
340 camera.ApplyFinite(x, y, camera.GetCenter() - ray);
341
342 ASSERT_NEAR(cx[i], x, 0.00001);
343 ASSERT_NEAR(cy[i], y, 0.00001);
344
345 // Alternative construction, by computing the intersection of the
346 // ray with the image plane
347 OrthancStone::Vector p;
348 ASSERT_TRUE(imagePlane.IntersectLine(p, camera.GetCenter(), -ray));
349 imagePlane.ProjectPoint(x, y, p);
350 ASSERT_NEAR(cx[i], x + 256, 0.01);
351 ASSERT_NEAR(cy[i], y + 256, 0.01);
352 }
353 }
354
355
356 TEST(Matrix, Inverse1)
357 {
358 OrthancStone::Matrix a, b;
359
360 a.resize(0, 0);
361 OrthancStone::LinearAlgebra::InvertMatrix(b, a);
362 ASSERT_EQ(0u, b.size1());
363 ASSERT_EQ(0u, b.size2());
364
365 a.resize(2, 3);
366 ASSERT_THROW(OrthancStone::LinearAlgebra::InvertMatrix(b, a), Orthanc::OrthancException);
367
368 a.resize(1, 1);
369 a(0, 0) = 45.0;
370
371 ASSERT_DOUBLE_EQ(45, OrthancStone::LinearAlgebra::ComputeDeterminant(a));
372 OrthancStone::LinearAlgebra::InvertMatrix(b, a);
373 ASSERT_EQ(1u, b.size1());
374 ASSERT_EQ(1u, b.size2());
375 ASSERT_DOUBLE_EQ(1.0 / 45.0, b(0, 0));
376
377 a(0, 0) = 0;
378 ASSERT_DOUBLE_EQ(0, OrthancStone::LinearAlgebra::ComputeDeterminant(a));
379 ASSERT_THROW(OrthancStone::LinearAlgebra::InvertMatrix(b, a), Orthanc::OrthancException);
380 }
381
382
383 TEST(Matrix, Inverse2)
384 {
385 OrthancStone::Matrix a, b;
386 a.resize(2, 2);
387 a(0, 0) = 4;
388 a(0, 1) = 3;
389 a(1, 0) = 3;
390 a(1, 1) = 2;
391
392 ASSERT_DOUBLE_EQ(-1, OrthancStone::LinearAlgebra::ComputeDeterminant(a));
393 OrthancStone::LinearAlgebra::InvertMatrix(b, a);
394 ASSERT_EQ(2u, b.size1());
395 ASSERT_EQ(2u, b.size2());
396
397 ASSERT_DOUBLE_EQ(-2, b(0, 0));
398 ASSERT_DOUBLE_EQ(3, b(0, 1));
399 ASSERT_DOUBLE_EQ(3, b(1, 0));
400 ASSERT_DOUBLE_EQ(-4, b(1, 1));
401
402 a(0, 0) = 1;
403 a(0, 1) = 2;
404 a(1, 0) = 3;
405 a(1, 1) = 4;
406
407 ASSERT_DOUBLE_EQ(-2, OrthancStone::LinearAlgebra::ComputeDeterminant(a));
408 OrthancStone::LinearAlgebra::InvertMatrix(b, a);
409
410 ASSERT_DOUBLE_EQ(-2, b(0, 0));
411 ASSERT_DOUBLE_EQ(1, b(0, 1));
412 ASSERT_DOUBLE_EQ(1.5, b(1, 0));
413 ASSERT_DOUBLE_EQ(-0.5, b(1, 1));
414 }
415
416
417 TEST(Matrix, Inverse3)
418 {
419 OrthancStone::Matrix a, b;
420 a.resize(3, 3);
421 a(0, 0) = 7;
422 a(0, 1) = 2;
423 a(0, 2) = 1;
424 a(1, 0) = 0;
425 a(1, 1) = 3;
426 a(1, 2) = -1;
427 a(2, 0) = -3;
428 a(2, 1) = 4;
429 a(2, 2) = -2;
430
431 ASSERT_DOUBLE_EQ(1, OrthancStone::LinearAlgebra::ComputeDeterminant(a));
432 OrthancStone::LinearAlgebra::InvertMatrix(b, a);
433 ASSERT_EQ(3u, b.size1());
434 ASSERT_EQ(3u, b.size2());
435
436 ASSERT_DOUBLE_EQ(-2, b(0, 0));
437 ASSERT_DOUBLE_EQ(8, b(0, 1));
438 ASSERT_DOUBLE_EQ(-5, b(0, 2));
439 ASSERT_DOUBLE_EQ(3, b(1, 0));
440 ASSERT_DOUBLE_EQ(-11, b(1, 1));
441 ASSERT_DOUBLE_EQ(7, b(1, 2));
442 ASSERT_DOUBLE_EQ(9, b(2, 0));
443 ASSERT_DOUBLE_EQ(-34, b(2, 1));
444 ASSERT_DOUBLE_EQ(21, b(2, 2));
445
446
447 a(0, 0) = 1;
448 a(0, 1) = 2;
449 a(0, 2) = 2;
450 a(1, 0) = 1;
451 a(1, 1) = 0;
452 a(1, 2) = 1;
453 a(2, 0) = 1;
454 a(2, 1) = 2;
455 a(2, 2) = 1;
456
457 ASSERT_DOUBLE_EQ(2, OrthancStone::LinearAlgebra::ComputeDeterminant(a));
458 OrthancStone::LinearAlgebra::InvertMatrix(b, a);
459 ASSERT_EQ(3u, b.size1());
460 ASSERT_EQ(3u, b.size2());
461
462 ASSERT_DOUBLE_EQ(-1, b(0, 0));
463 ASSERT_DOUBLE_EQ(1, b(0, 1));
464 ASSERT_DOUBLE_EQ(1, b(0, 2));
465 ASSERT_DOUBLE_EQ(0, b(1, 0));
466 ASSERT_DOUBLE_EQ(-0.5, b(1, 1));
467 ASSERT_DOUBLE_EQ(0.5, b(1, 2));
468 ASSERT_DOUBLE_EQ(1, b(2, 0));
469 ASSERT_DOUBLE_EQ(0, b(2, 1));
470 ASSERT_DOUBLE_EQ(-1, b(2, 2));
471 }
472
473
474 TEST(Matrix, Inverse4)
475 {
476 OrthancStone::Matrix a, b;
477 a.resize(4, 4);
478 a(0, 0) = 2;
479 a(0, 1) = 1;
480 a(0, 2) = 2;
481 a(0, 3) = -3;
482 a(1, 0) = -2;
483 a(1, 1) = 2;
484 a(1, 2) = -1;
485 a(1, 3) = -1;
486 a(2, 0) = 2;
487 a(2, 1) = 2;
488 a(2, 2) = -3;
489 a(2, 3) = -1;
490 a(3, 0) = 3;
491 a(3, 1) = -2;
492 a(3, 2) = -3;
493 a(3, 3) = -1;
494
495 OrthancStone::LinearAlgebra::InvertMatrix(b, a);
496 ASSERT_EQ(4u, b.size1());
497 ASSERT_EQ(4u, b.size2());
498
499 b *= 134.0; // This is the determinant
500
501 ASSERT_DOUBLE_EQ(8, b(0, 0));
502 ASSERT_DOUBLE_EQ(-44, b(0, 1));
503 ASSERT_DOUBLE_EQ(30, b(0, 2));
504 ASSERT_DOUBLE_EQ(-10, b(0, 3));
505 ASSERT_DOUBLE_EQ(2, b(1, 0));
506 ASSERT_DOUBLE_EQ(-11, b(1, 1));
507 ASSERT_DOUBLE_EQ(41, b(1, 2));
508 ASSERT_DOUBLE_EQ(-36, b(1, 3));
509 ASSERT_DOUBLE_EQ(16, b(2, 0));
510 ASSERT_DOUBLE_EQ(-21, b(2, 1));
511 ASSERT_DOUBLE_EQ(-7, b(2, 2));
512 ASSERT_DOUBLE_EQ(-20, b(2, 3));
513 ASSERT_DOUBLE_EQ(-28, b(3, 0));
514 ASSERT_DOUBLE_EQ(-47, b(3, 1));
515 ASSERT_DOUBLE_EQ(29, b(3, 2));
516 ASSERT_DOUBLE_EQ(-32, b(3, 3));
517 }
518
519
520 TEST(FiniteProjectiveCamera, Calibration)
521 {
522 unsigned int volumeWidth = 512;
523 unsigned int volumeHeight = 512;
524 unsigned int volumeDepth = 110;
525
526 OrthancStone::Vector camera = OrthancStone::LinearAlgebra::CreateVector
527 (-1000, -5000, -static_cast<double>(volumeDepth) * 32);
528
529 OrthancStone::Vector principalPoint = OrthancStone::LinearAlgebra::CreateVector
530 (volumeWidth/2, volumeHeight/2, volumeDepth * 2);
531
532 OrthancStone::FiniteProjectiveCamera c(camera, principalPoint, 0, 512, 512, 1, 1);
533
534 double swapv[9] = { 1, 0, 0,
535 0, -1, 512,
536 0, 0, 1 };
537 OrthancStone::Matrix swap;
538 OrthancStone::LinearAlgebra::FillMatrix(swap, 3, 3, swapv);
539
540 OrthancStone::Matrix p = OrthancStone::LinearAlgebra::Product(swap, c.GetMatrix());
541 p /= p(2,3);
542
543 ASSERT_NEAR( 1.04437, p(0,0), 0.00001);
544 ASSERT_NEAR(-0.0703111, p(0,1), 0.00000001);
545 ASSERT_NEAR(-0.179283, p(0,2), 0.000001);
546 ASSERT_NEAR( 61.7431, p(0,3), 0.0001);
547 ASSERT_NEAR( 0.11127, p(1,0), 0.000001);
548 ASSERT_NEAR(-0.595541, p(1,1), 0.000001);
549 ASSERT_NEAR( 0.872211, p(1,2), 0.000001);
550 ASSERT_NEAR( 203.748, p(1,3), 0.001);
551 ASSERT_NEAR( 3.08593e-05, p(2,0), 0.0000000001);
552 ASSERT_NEAR( 0.000129138, p(2,1), 0.000000001);
553 ASSERT_NEAR( 9.18901e-05, p(2,2), 0.0000000001);
554 ASSERT_NEAR( 1, p(2,3), 0.0000001);
555 }
556
557
558 static bool IsEqualRotationVector(OrthancStone::Vector a,
559 OrthancStone::Vector b)
560 {
561 if (a.size() != b.size() ||
562 a.size() != 3)
563 {
564 return false;
565 }
566 else
567 {
568 OrthancStone::LinearAlgebra::NormalizeVector(a);
569 OrthancStone::LinearAlgebra::NormalizeVector(b);
570 return OrthancStone::LinearAlgebra::IsCloseToZero(boost::numeric::ublas::norm_2(a - b));
571 }
572 }
573
574
575 TEST(GeometryToolbox, AlignVectorsWithRotation)
576 {
577 OrthancStone::Vector a, b;
578 OrthancStone::Matrix r;
579
580 OrthancStone::LinearAlgebra::AssignVector(a, -200, 200, -846.63);
581 OrthancStone::LinearAlgebra::AssignVector(b, 0, 0, 1);
582
583 OrthancStone::GeometryToolbox::AlignVectorsWithRotation(r, a, b);
584 ASSERT_TRUE(OrthancStone::LinearAlgebra::IsRotationMatrix(r));
585 ASSERT_TRUE(IsEqualRotationVector(OrthancStone::LinearAlgebra::Product(r, a), b));
586
587 OrthancStone::GeometryToolbox::AlignVectorsWithRotation(r, b, a);
588 ASSERT_TRUE(OrthancStone::LinearAlgebra::IsRotationMatrix(r));
589 ASSERT_TRUE(IsEqualRotationVector(OrthancStone::LinearAlgebra::Product(r, b), a));
590
591 OrthancStone::LinearAlgebra::AssignVector(a, 1, 0, 0);
592 OrthancStone::LinearAlgebra::AssignVector(b, 0, 0, 1);
593 OrthancStone::GeometryToolbox::AlignVectorsWithRotation(r, a, b);
594 ASSERT_TRUE(OrthancStone::LinearAlgebra::IsRotationMatrix(r));
595 ASSERT_TRUE(IsEqualRotationVector(OrthancStone::LinearAlgebra::Product(r, a), b));
596
597 OrthancStone::LinearAlgebra::AssignVector(a, 0, 1, 0);
598 OrthancStone::LinearAlgebra::AssignVector(b, 0, 0, 1);
599 OrthancStone::GeometryToolbox::AlignVectorsWithRotation(r, a, b);
600 ASSERT_TRUE(OrthancStone::LinearAlgebra::IsRotationMatrix(r));
601 ASSERT_TRUE(IsEqualRotationVector(OrthancStone::LinearAlgebra::Product(r, a), b));
602
603 OrthancStone::LinearAlgebra::AssignVector(a, 0, 0, 1);
604 OrthancStone::LinearAlgebra::AssignVector(b, 0, 0, 1);
605 OrthancStone::GeometryToolbox::AlignVectorsWithRotation(r, a, b);
606 ASSERT_TRUE(OrthancStone::LinearAlgebra::IsRotationMatrix(r));
607 ASSERT_TRUE(IsEqualRotationVector(OrthancStone::LinearAlgebra::Product(r, a), b));
608
609 OrthancStone::LinearAlgebra::AssignVector(a, 0, 0, 0);
610 OrthancStone::LinearAlgebra::AssignVector(b, 0, 0, 1);
611 ASSERT_THROW(OrthancStone::GeometryToolbox::AlignVectorsWithRotation(r, a, b), Orthanc::OrthancException);
612
613 // TODO: Deal with opposite vectors
614
615 /*
616 OrthancStone::LinearAlgebra::AssignVector(a, 0, 0, -1);
617 OrthancStone::LinearAlgebra::AssignVector(b, 0, 0, 1);
618 OrthancStone::GeometryToolbox::AlignVectorsWithRotation(r, a, b);
619 OrthancStone::LinearAlgebra::Print(r);
620 OrthancStone::LinearAlgebra::Print(boost::numeric::ublas::prod(r, a));
621 */
622 }
623
624
625 static bool IsEqualVectorL1(OrthancStone::Vector a,
626 OrthancStone::Vector b)
627 {
628 if (a.size() != b.size())
629 {
630 return false;
631 }
632 else
633 {
634 for (size_t i = 0; i < a.size(); i++)
635 {
636 if (!OrthancStone::LinearAlgebra::IsNear(a[i], b[i], 0.0001))
637 {
638 return false;
639 }
640 }
641
642 return true;
643 }
644 }
645
646
647 TEST(VolumeImageGeometry, Basic)
648 {
649 using namespace OrthancStone;
650
651 VolumeImageGeometry g;
652 g.SetSizeInVoxels(10, 20, 30);
653 g.SetVoxelDimensions(1, 2, 3);
654
655 Vector p = g.GetCoordinates(0, 0, 0);
656 ASSERT_EQ(3u, p.size());
657 ASSERT_DOUBLE_EQ(-1.0 / 2.0, p[0]);
658 ASSERT_DOUBLE_EQ(-2.0 / 2.0, p[1]);
659 ASSERT_DOUBLE_EQ(-3.0 / 2.0, p[2]);
660
661 p = g.GetCoordinates(1, 1, 1);
662 ASSERT_DOUBLE_EQ(-1.0 / 2.0 + 10.0 * 1.0, p[0]);
663 ASSERT_DOUBLE_EQ(-2.0 / 2.0 + 20.0 * 2.0, p[1]);
664 ASSERT_DOUBLE_EQ(-3.0 / 2.0 + 30.0 * 3.0, p[2]);
665
666 VolumeProjection proj;
667 ASSERT_TRUE(g.DetectProjection(proj, g.GetAxialGeometry().GetNormal()));
668 ASSERT_EQ(VolumeProjection_Axial, proj);
669 ASSERT_TRUE(g.DetectProjection(proj, g.GetCoronalGeometry().GetNormal()));
670 ASSERT_EQ(VolumeProjection_Coronal, proj);
671 ASSERT_TRUE(g.DetectProjection(proj, g.GetSagittalGeometry().GetNormal()));
672 ASSERT_EQ(VolumeProjection_Sagittal, proj);
673
674 ASSERT_EQ(10u, g.GetProjectionWidth(VolumeProjection_Axial));
675 ASSERT_EQ(20u, g.GetProjectionHeight(VolumeProjection_Axial));
676 ASSERT_EQ(30u, g.GetProjectionDepth(VolumeProjection_Axial));
677 ASSERT_EQ(10u, g.GetProjectionWidth(VolumeProjection_Coronal));
678 ASSERT_EQ(30u, g.GetProjectionHeight(VolumeProjection_Coronal));
679 ASSERT_EQ(20u, g.GetProjectionDepth(VolumeProjection_Coronal));
680 ASSERT_EQ(20u, g.GetProjectionWidth(VolumeProjection_Sagittal));
681 ASSERT_EQ(30u, g.GetProjectionHeight(VolumeProjection_Sagittal));
682 ASSERT_EQ(10u, g.GetProjectionDepth(VolumeProjection_Sagittal));
683
684 p = g.GetVoxelDimensions(VolumeProjection_Axial);
685 ASSERT_EQ(3u, p.size());
686 ASSERT_DOUBLE_EQ(1, p[0]);
687 ASSERT_DOUBLE_EQ(2, p[1]);
688 ASSERT_DOUBLE_EQ(3, p[2]);
689 p = g.GetVoxelDimensions(VolumeProjection_Coronal);
690 ASSERT_EQ(3u, p.size());
691 ASSERT_DOUBLE_EQ(1, p[0]);
692 ASSERT_DOUBLE_EQ(3, p[1]);
693 ASSERT_DOUBLE_EQ(2, p[2]);
694 p = g.GetVoxelDimensions(VolumeProjection_Sagittal);
695 ASSERT_EQ(3u, p.size());
696 ASSERT_DOUBLE_EQ(2, p[0]);
697 ASSERT_DOUBLE_EQ(3, p[1]);
698 ASSERT_DOUBLE_EQ(1, p[2]);
699
700 // Loop over all the voxels of the volume
701 for (unsigned int z = 0; z < g.GetDepth(); z++)
702 {
703 const float zz = (0.5f + static_cast<float>(z)) / static_cast<float>(g.GetDepth()); // Z-center of the voxel
704
705 for (unsigned int y = 0; y < g.GetHeight(); y++)
706 {
707 const float yy = (0.5f + static_cast<float>(y)) / static_cast<float>(g.GetHeight()); // Y-center of the voxel
708
709 for (unsigned int x = 0; x < g.GetWidth(); x++)
710 {
711 const float xx = (0.5f + static_cast<float>(x)) / static_cast<float>(g.GetWidth()); // X-center of the voxel
712
713 const float sx = 1.0f;
714 const float sy = 2.0f;
715 const float sz = 3.0f;
716
717 Vector p = g.GetCoordinates(xx, yy, zz);
718
719 Vector q = (g.GetAxialGeometry().MapSliceToWorldCoordinates(
720 static_cast<double>(x) * sx,
721 static_cast<double>(y) * sy) +
722 z * sz * g.GetAxialGeometry().GetNormal());
723 ASSERT_TRUE(IsEqualVectorL1(p, q));
724
725 q = (g.GetCoronalGeometry().MapSliceToWorldCoordinates(
726 static_cast<double>(x) * sx,
727 static_cast<double>(g.GetDepth() - 1 - z) * sz) +
728 y * sy * g.GetCoronalGeometry().GetNormal());
729 ASSERT_TRUE(IsEqualVectorL1(p, q));
730
731 /**
732 * WARNING: In sagittal geometry, the normal points to
733 * REDUCING X-axis in the 3D world. This is necessary to keep
734 * the right-hand coordinate system. Hence the "-".
735 **/
736 q = (g.GetSagittalGeometry().MapSliceToWorldCoordinates(
737 static_cast<double>(y) * sy,
738 static_cast<double>(g.GetDepth() - 1 - z) * sz) +
739 x * sx * (-g.GetSagittalGeometry().GetNormal()));
740 ASSERT_TRUE(IsEqualVectorL1(p, q));
741 }
742 }
743 }
744
745 ASSERT_EQ(0, (int) VolumeProjection_Axial);
746 ASSERT_EQ(1, (int) VolumeProjection_Coronal);
747 ASSERT_EQ(2, (int) VolumeProjection_Sagittal);
748
749 for (int p = 0; p < 3; p++)
750 {
751 VolumeProjection projection = (VolumeProjection) p;
752 const CoordinateSystem3D& s = g.GetProjectionGeometry(projection);
753
754 ASSERT_THROW(g.GetProjectionSlice(projection, g.GetProjectionDepth(projection)), Orthanc::OrthancException);
755
756 for (unsigned int i = 0; i < g.GetProjectionDepth(projection); i++)
757 {
758 CoordinateSystem3D plane = g.GetProjectionSlice(projection, i);
759
760 if (projection == VolumeProjection_Sagittal)
761 {
762 ASSERT_TRUE(IsEqualVectorL1(plane.GetOrigin(), s.GetOrigin() + static_cast<double>(i) *
763 (-s.GetNormal()) * g.GetVoxelDimensions(projection)[2]));
764 }
765 else
766 {
767 ASSERT_TRUE(IsEqualVectorL1(plane.GetOrigin(), s.GetOrigin() + static_cast<double>(i) *
768 s.GetNormal() * g.GetVoxelDimensions(projection)[2]));
769 }
770
771 ASSERT_TRUE(IsEqualVectorL1(plane.GetAxisX(), s.GetAxisX()));
772 ASSERT_TRUE(IsEqualVectorL1(plane.GetAxisY(), s.GetAxisY()));
773
774 unsigned int slice;
775 VolumeProjection q;
776 ASSERT_TRUE(g.DetectSlice(q, slice, plane));
777 ASSERT_EQ(projection, q);
778 ASSERT_EQ(i, slice);
779 }
780 }
781 }
782
783
784 TEST(LinearAlgebra, ParseVectorLocale)
785 {
786 OrthancStone::Vector v;
787
788 ASSERT_TRUE(OrthancStone::LinearAlgebra::ParseVector(v, "1.2"));
789 ASSERT_EQ(1u, v.size());
790 ASSERT_DOUBLE_EQ(1.2, v[0]);
791
792 ASSERT_TRUE(OrthancStone::LinearAlgebra::ParseVector(v, "-1.2e+2"));
793 ASSERT_EQ(1u, v.size());
794 ASSERT_DOUBLE_EQ(-120.0, v[0]);
795
796 ASSERT_TRUE(OrthancStone::LinearAlgebra::ParseVector(v, "-1e-2\\2"));
797 ASSERT_EQ(2u, v.size());
798 ASSERT_DOUBLE_EQ(-0.01, v[0]);
799 ASSERT_DOUBLE_EQ(2.0, v[1]);
800
801 ASSERT_TRUE(OrthancStone::LinearAlgebra::ParseVector(v, "1.3671875\\1.3671875"));
802 ASSERT_EQ(2u, v.size());
803 ASSERT_DOUBLE_EQ(1.3671875, v[0]);
804 ASSERT_DOUBLE_EQ(1.3671875, v[1]);
805 }
806
807 TEST(GenericToolbox, NormalizeUuid)
808 {
809 std::string ref("44ca5051-14ef-4d2f-8bd7-db20bfb61fbb");
810
811 {
812 std::string u("44ca5051-14ef-4d2f-8bd7-db20bfb61fbb");
813 OrthancStone::GenericToolbox::NormalizeUuid(u);
814 ASSERT_EQ(ref, u);
815 }
816
817 // space left
818 {
819 std::string u(" 44ca5051-14ef-4d2f-8bd7-db20bfb61fbb");
820 OrthancStone::GenericToolbox::NormalizeUuid(u);
821 ASSERT_EQ(ref, u);
822 }
823
824 // space right
825 {
826 std::string u("44ca5051-14ef-4d2f-8bd7-db20bfb61fbb ");
827 OrthancStone::GenericToolbox::NormalizeUuid(u);
828 ASSERT_EQ(ref, u);
829 }
830
831 // space l & r
832 {
833 std::string u(" 44ca5051-14ef-4d2f-8bd7-db20bfb61fbb ");
834 OrthancStone::GenericToolbox::NormalizeUuid(u);
835 ASSERT_EQ(ref, u);
836 }
837
838 // space left + case
839 {
840 std::string u(" 44CA5051-14ef-4d2f-8bd7-dB20bfb61fbb");
841 OrthancStone::GenericToolbox::NormalizeUuid(u);
842 ASSERT_EQ(ref, u);
843 }
844
845 // space right + case
846 {
847 std::string u("44ca5051-14EF-4D2f-8bd7-db20bfb61fbB ");
848 OrthancStone::GenericToolbox::NormalizeUuid(u);
849 ASSERT_EQ(ref, u);
850 }
851
852 // space l & r + case
853 {
854 std::string u(" 44cA5051-14Ef-4d2f-8bD7-db20bfb61fbb ");
855 OrthancStone::GenericToolbox::NormalizeUuid(u);
856 ASSERT_EQ(ref, u);
857 }
858
859 // no
860 {
861 std::string u(" 44ca5051-14ef-4d2f-8bd7- db20bfb61fbb");
862 OrthancStone::GenericToolbox::NormalizeUuid(u);
863 ASSERT_NE(ref, u);
864 }
865
866 // no
867 {
868 std::string u("44ca5051-14ef-4d2f-8bd7-db20bfb61fb");
869 OrthancStone::GenericToolbox::NormalizeUuid(u);
870 ASSERT_NE(ref, u);
871 }
872 }
873
874
875 TEST(CoordinateSystem3D, Basic)
876 {
877 using namespace OrthancStone;
878
879 {
880 CoordinateSystem3D c;
881 ASSERT_FALSE(c.IsValid());
882 ASSERT_DOUBLE_EQ(c.GetNormal()[0], 0);
883 ASSERT_DOUBLE_EQ(c.GetNormal()[1], 0);
884 ASSERT_DOUBLE_EQ(c.GetNormal()[2], 1);
885
886 ASSERT_DOUBLE_EQ(0, c.ComputeDistance(LinearAlgebra::CreateVector(0, 0, 0)));
887 ASSERT_DOUBLE_EQ(0, c.ComputeDistance(LinearAlgebra::CreateVector(5, 0, 0)));
888 ASSERT_DOUBLE_EQ(0, c.ComputeDistance(LinearAlgebra::CreateVector(0, 5, 0)));
889 ASSERT_DOUBLE_EQ(5, c.ComputeDistance(LinearAlgebra::CreateVector(0, 0, 5)));
890 }
891
892 {
893 CoordinateSystem3D c("nope1", "nope2");
894 ASSERT_FALSE(c.IsValid());
895 ASSERT_DOUBLE_EQ(c.GetNormal()[0], 0);
896 ASSERT_DOUBLE_EQ(c.GetNormal()[1], 0);
897 ASSERT_DOUBLE_EQ(c.GetNormal()[2], 1);
898 }
899
900 {
901 // https://www.vedantu.com/maths/perpendicular-distance-of-a-point-from-a-plane
902 CoordinateSystem3D c = CoordinateSystem3D::CreateFromPlaneGeneralForm(2, 4, -4, -6);
903 ASSERT_DOUBLE_EQ(3, c.ComputeDistance(LinearAlgebra::CreateVector(0, 3, 6)));
904 }
905
906 {
907 // https://mathinsight.org/distance_point_plane_examples
908 CoordinateSystem3D c = CoordinateSystem3D::CreateFromPlaneGeneralForm(2, -2, 5, 8);
909 ASSERT_DOUBLE_EQ(39.0 / sqrt(33.0), c.ComputeDistance(LinearAlgebra::CreateVector(4, -4, 3)));
910 }
911
912 {
913 // https://www.ck12.org/calculus/distance-between-a-point-and-a-plane/lesson/Distance-Between-a-Point-and-a-Plane-MAT-ALY/
914 const Vector a = LinearAlgebra::CreateVector(3, 6, 9);
915 const Vector b = LinearAlgebra::CreateVector(9, 6, 3);
916 const Vector c = LinearAlgebra::CreateVector(6, -9, 9);
917 CoordinateSystem3D d = CoordinateSystem3D::CreateFromThreePoints(a, b, c);
918 ASSERT_DOUBLE_EQ(0, d.ComputeDistance(a));
919 ASSERT_DOUBLE_EQ(0, d.ComputeDistance(b));
920 ASSERT_DOUBLE_EQ(0, d.ComputeDistance(c));
921 }
922
923 {
924 // https://tutorial.math.lamar.edu/classes/calcii/eqnsofplanes.aspx
925 const Vector a = LinearAlgebra::CreateVector(1, -2, 0);
926 const Vector b = LinearAlgebra::CreateVector(3, 1, 4);
927 const Vector c = LinearAlgebra::CreateVector(0, -1, 2);
928 CoordinateSystem3D d = CoordinateSystem3D::CreateFromThreePoints(a, b, c);
929 double r = d.GetNormal() [0] / 2.0;
930 ASSERT_DOUBLE_EQ(-8 * r, d.GetNormal() [1]);
931 ASSERT_DOUBLE_EQ(5 * r, d.GetNormal() [2]);
932 }
933 }