comparison Framework/Radiography/RadiographyMaskLayer.cpp @ 475:3c28542229a3 am-touch-events

added a mask layer in the RadiographyWidget (to be cleaned)
author am@osimis.io
date Tue, 12 Feb 2019 12:22:13 +0100
parents
children a95090305dd4
comparison
equal deleted inserted replaced
467:22b80f5c3a1c 475:3c28542229a3
1 /**
2 * Stone of Orthanc
3 * Copyright (C) 2012-2016 Sebastien Jodogne, Medical Physics
4 * Department, University Hospital of Liege, Belgium
5 * Copyright (C) 2017-2018 Osimis S.A., Belgium
6 *
7 * This program is free software: you can redistribute it and/or
8 * modify it under the terms of the GNU Affero General Public License
9 * as published by the Free Software Foundation, either version 3 of
10 * the License, or (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Affero General Public License for more details.
16 *
17 * You should have received a copy of the GNU Affero General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 **/
20
21
22 #include "RadiographyMaskLayer.h"
23 #include "RadiographyDicomLayer.h"
24
25 #include "RadiographyScene.h"
26 #include "Core/Images/Image.h"
27 #include "Core/Images/ImageProcessing.h"
28 #include <Core/OrthancException.h>
29
30 namespace OrthancStone
31 {
32
33 void ComputeMaskExtent(unsigned int& left, unsigned int& right, unsigned int& top, unsigned int& bottom, const std::vector<MaskPoint>& corners)
34 {
35 left = std::numeric_limits<unsigned int>::max();
36 right = std::numeric_limits<unsigned int>::min();
37 top = std::numeric_limits<unsigned int>::max();
38 bottom = std::numeric_limits<unsigned int>::min();
39
40 for (size_t i = 0; i < corners.size(); i++)
41 {
42 const MaskPoint& p = corners[i];
43 left = std::min(p.x, left);
44 right = std::max(p.x, right);
45 bottom = std::max(p.y, bottom);
46 top = std::min(p.y, top);
47 }
48 }
49
50 void RadiographyMaskLayer::SetCorners(const std::vector<MaskPoint>& corners)
51 {
52 corners_ = corners;
53 invalidated_ = true;
54 }
55
56 void RadiographyMaskLayer::Render(Orthanc::ImageAccessor& buffer,
57 const AffineTransform2D& viewTransform,
58 ImageInterpolation interpolation) const
59 {
60 if (dicomLayer_.GetWidth() == 0) // nothing to do if the DICOM layer is not displayed (or not loaded)
61 return;
62
63 if (invalidated_)
64 {
65 mask_.reset(new Orthanc::Image(Orthanc::PixelFormat_Grayscale8, dicomLayer_.GetWidth(), dicomLayer_.GetHeight(), false));
66
67 DrawMask();
68
69 // for (unsigned int i = 0; i < 100; i++)
70 // {
71 // for (unsigned int j = 0; j < 50; j++)
72 // {
73 // if ((i + j) % 2 == 1)
74 // {
75 // Orthanc::ImageAccessor region;
76 // mask_->GetRegion(region, i* 20, j * 20, 20, 20);
77 // Orthanc::ImageProcessing::Set(region, 255);
78 // }
79 // }
80 // }
81 invalidated_ = false;
82 }
83
84 {// rendering
85 if (buffer.GetFormat() != Orthanc::PixelFormat_Float32)
86 {
87 throw Orthanc::OrthancException(Orthanc::ErrorCode_IncompatibleImageFormat);
88 }
89
90 unsigned int cropX, cropY, cropWidth, cropHeight;
91 dicomLayer_.GetCrop(cropX, cropY, cropWidth, cropHeight);
92
93 const AffineTransform2D t = AffineTransform2D::Combine(
94 viewTransform, dicomLayer_.GetTransform(),
95 AffineTransform2D::CreateOffset(cropX, cropY));
96
97 Orthanc::ImageAccessor cropped;
98 mask_->GetRegion(cropped, cropX, cropY, cropWidth, cropHeight);
99
100 Orthanc::Image tmp(Orthanc::PixelFormat_Grayscale8, buffer.GetWidth(), buffer.GetHeight(), false);
101
102 t.Apply(tmp, cropped, interpolation, true /* clear */);
103
104 // Blit
105 const unsigned int width = buffer.GetWidth();
106 const unsigned int height = buffer.GetHeight();
107
108 for (unsigned int y = 0; y < height; y++)
109 {
110 float *q = reinterpret_cast<float*>(buffer.GetRow(y));
111 const uint8_t *p = reinterpret_cast<uint8_t*>(tmp.GetRow(y));
112
113 for (unsigned int x = 0; x < width; x++, p++, q++)
114 {
115 if (*p == 0)
116 *q = foreground_;
117 // else keep the underlying pixel value
118 }
119 }
120
121 }
122 }
123
124 // from https://www.geeksforgeeks.org/how-to-check-if-a-given-point-lies-inside-a-polygon/
125 // Given three colinear points p, q, r, the function checks if
126 // point q lies on line segment 'pr'
127 bool onSegment(const MaskPoint& p, const MaskPoint& q, const MaskPoint& r)
128 {
129 if (q.x <= std::max(p.x, r.x) && q.x >= std::min(p.x, r.x) &&
130 q.y <= std::max(p.y, r.y) && q.y >= std::min(p.y, r.y))
131 return true;
132 return false;
133 }
134
135 // To find orientation of ordered triplet (p, q, r).
136 // The function returns following values
137 // 0 --> p, q and r are colinear
138 // 1 --> Clockwise
139 // 2 --> Counterclockwise
140 int orientation(const MaskPoint& p, const MaskPoint& q, const MaskPoint& r)
141 {
142 int val = (q.y - p.y) * (r.x - q.x) -
143 (q.x - p.x) * (r.y - q.y);
144
145 if (val == 0) return 0; // colinear
146 return (val > 0)? 1: 2; // clock or counterclock wise
147 }
148
149 // The function that returns true if line segment 'p1q1'
150 // and 'p2q2' intersect.
151 bool doIntersect(const MaskPoint& p1, const MaskPoint& q1, const MaskPoint& p2, const MaskPoint& q2)
152 {
153 // Find the four orientations needed for general and
154 // special cases
155 int o1 = orientation(p1, q1, p2);
156 int o2 = orientation(p1, q1, q2);
157 int o3 = orientation(p2, q2, p1);
158 int o4 = orientation(p2, q2, q1);
159
160 // General case
161 if (o1 != o2 && o3 != o4)
162 return true;
163
164 // Special Cases
165 // p1, q1 and p2 are colinear and p2 lies on segment p1q1
166 if (o1 == 0 && onSegment(p1, p2, q1)) return true;
167
168 // p1, q1 and p2 are colinear and q2 lies on segment p1q1
169 if (o2 == 0 && onSegment(p1, q2, q1)) return true;
170
171 // p2, q2 and p1 are colinear and p1 lies on segment p2q2
172 if (o3 == 0 && onSegment(p2, p1, q2)) return true;
173
174 // p2, q2 and q1 are colinear and q1 lies on segment p2q2
175 if (o4 == 0 && onSegment(p2, q1, q2)) return true;
176
177 return false; // Doesn't fall in any of the above cases
178 }
179
180 // Define Infinite (Using INT_MAX caused overflow problems)
181 #define MASK_INF 1000000
182
183 // Returns true if the point p lies inside the polygon[] with n vertices
184 bool isInside(const std::vector<MaskPoint>& polygon, const MaskPoint& p)
185 {
186 // There must be at least 3 vertices in polygon[]
187 if (polygon.size() < 3) return false;
188
189 // Create a point for line segment from p to infinite
190 MaskPoint extreme = {MASK_INF, p.y};
191
192 // Count intersections of the above line with sides of polygon
193 int count = 0, i = 0;
194 do
195 {
196 int next = (i+1) % polygon.size();
197
198 // Check if the line segment from 'p' to 'extreme' intersects
199 // with the line segment from 'polygon[i]' to 'polygon[next]'
200 if (doIntersect(polygon[i], polygon[next], p, extreme))
201 {
202 // If the point 'p' is colinear with line segment 'i-next',
203 // then check if it lies on segment. If it lies, return true,
204 // otherwise false
205 if (orientation(polygon[i], p, polygon[next]) == 0)
206 return onSegment(polygon[i], p, polygon[next]);
207
208 count++;
209 }
210 i = next;
211 } while (i != 0);
212
213 // Return true if count is odd, false otherwise
214 return count&1; // Same as (count%2 == 1)
215 }
216
217
218 void RadiographyMaskLayer::DrawMask() const
219 {
220 unsigned int left;
221 unsigned int right;
222 unsigned int top;
223 unsigned int bottom;
224
225 ComputeMaskExtent(left, right, top, bottom, corners_);
226
227 Orthanc::ImageProcessing::Set(*mask_, 0);
228
229 MaskPoint p(left, top);
230 for (p.y = top; p.y <= bottom; p.y++)
231 {
232 unsigned char* q = reinterpret_cast<unsigned char*>(mask_->GetRow(p.y));
233 for (p.x = left; p.x <= right; p.x++, q++)
234 {
235 if (isInside(corners_, p))
236 {
237 *q = 255;
238 }
239 }
240 }
241
242 // Orthanc::ImageAccessor region;
243 // mask_->GetRegion(region, 100, 100, 1000, 1000);
244 // Orthanc::ImageProcessing::Set(region, 255);
245 }
246
247 }