Mercurial > hg > orthanc-java
view Samples/MammographyDeepLearning/src/main/java/RetinaNet.java @ 37:14af12f73fb5
added CodeGeneration/README.txt
author | Sebastien Jodogne <s.jodogne@gmail.com> |
---|---|
date | Tue, 02 Jul 2024 17:05:56 +0200 |
parents | 43923934e934 |
children |
line wrap: on
line source
/** * SPDX-FileCopyrightText: 2023-2024 Sebastien Jodogne, UCLouvain, Belgium * SPDX-License-Identifier: GPL-3.0-or-later **/ /** * Java plugin for Orthanc * Copyright (C) 2023-2024 Sebastien Jodogne, UCLouvain, Belgium * * This program is free software: you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. **/ import ai.djl.MalformedModelException; import ai.djl.inference.Predictor; import ai.djl.ndarray.NDArray; import ai.djl.ndarray.NDList; import ai.djl.repository.zoo.Criteria; import ai.djl.repository.zoo.ModelNotFoundException; import ai.djl.repository.zoo.ZooModel; import ai.djl.training.util.ProgressBar; import ai.djl.translate.TranslateException; import java.io.IOException; import java.nio.file.Paths; import java.util.ArrayList; import java.util.Collections; import java.util.LinkedList; import java.util.List; public class RetinaNet { private ZooModel model; private static double sigmoid(double x) { // This corresponds to "torch.sigmoid()", aka. "torch.expit()" return 1.0f / (1.0f + Math.exp(-x)); } private static float clamp(float value, float min, float max) { if (value < min) { return min; } else if (value > max) { return max; } else { return value; } } /** * This function corresponds to method "decode_single()" in class "BoxCoder" in: * https://github.com/pytorch/vision/blob/main/torchvision/models/detection/_utils.py */ public static Rectangle decodeSingle(float[] rel_codes, float[] boxes, int image_shape_width, int image_shape_height) { /** * The following constant come from the constructor of "BoxCoder" in: * https://github.com/pytorch/vision/blob/main/torchvision/models/detection/_utils.py * * self, weights: Tuple[float, float, float, float], bbox_xform_clip: float = math.log(1000.0 / 16) */ final float BBOX_XFORM_CLIP = (float) Math.log(1000.0 / 16.0); /** * The following constants come from the following line in * https://github.com/pytorch/vision/blob/main/torchvision/models/detection/retinanet.py * * self.box_coder = det_utils.BoxCoder(weights=(1.0, 1.0, 1.0, 1.0)) */ final float WX = 1.0f; final float WY = 1.0f; final float WW = 1.0f; final float WH = 1.0f; final float widths = boxes[2] - boxes[0]; final float heights = boxes[3] - boxes[1]; final float ctr_x = boxes[0] + 0.5f * widths; final float ctr_y = boxes[1] + 0.5f * heights; final float dx = rel_codes[0] / WX; final float dy = rel_codes[1] / WY; final float dw = Math.min(rel_codes[2] / WW, BBOX_XFORM_CLIP); // This corresponds to "torch.clamp()" final float dh = Math.min(rel_codes[3] / WH, BBOX_XFORM_CLIP); final float pred_ctr_x = dx * widths + ctr_x; final float pred_ctr_y = dy * heights + ctr_y; final float pred_w = (float) (Math.exp(dw) * widths); final float pred_h = (float) (Math.exp(dh) * heights); final float c_to_c_h = 0.5f * pred_h; final float c_to_c_w = 0.5f * pred_w; final float pred_boxes1 = pred_ctr_x - c_to_c_w; final float pred_boxes2 = pred_ctr_y - c_to_c_h; final float pred_boxes3 = pred_ctr_x + c_to_c_w; final float pred_boxes4 = pred_ctr_y + c_to_c_h; // The calls to clamp() correspond to function "box_ops.clip_boxes_to_image()" return new Rectangle( clamp(pred_boxes1, 0, image_shape_width), clamp(pred_boxes2, 0, image_shape_height), clamp(pred_boxes3, 0, image_shape_width), clamp(pred_boxes4, 0, image_shape_height)); } public RetinaNet(String path) throws ModelNotFoundException, MalformedModelException, IOException { Criteria criteria = Criteria.builder() .setTypes(NDList.class, NDList.class) .optModelPath(Paths.get(path)) //.optOption("mapLocation", "true") // this model requires mapLocation for GPU //.optTranslator(translator) .optProgress(new ProgressBar()).build(); model = criteria.loadModel(); } public ZooModel getModel() { return model; } public void close() { model.close(); } public List<Detection> apply(NDArray image) throws TranslateException { if (image.getShape().dimension() != 3 || image.getShape().get(0) != 3) { throw new RuntimeException(); } final int imageWidth = (int) image.getShape().get(2); final int imageHeight = (int) image.getShape().get(1); Predictor<NDList, NDList> predictor = model.newPredictor(); NDList output = predictor.predict(new NDList(image)); if (output.size() <= 3) { throw new IllegalArgumentException(); } NDArray logits_per_image = output.get(0); NDArray box_regression_per_image = output.get(1); NDArray anchors_per_image = output.get(2); final int numberOfClasses = (int) logits_per_image.getShape().get(2); if (logits_per_image.getShape().dimension() != 3 || logits_per_image.getShape().get(0) != 1 || numberOfClasses != 2 /* "2" corresponds to a binary classification task */ || box_regression_per_image.getShape().dimension() != 3 || box_regression_per_image.getShape().get(0) != 1 || box_regression_per_image.getShape().get(2) != 4 || anchors_per_image.getShape().dimension() != 2 || anchors_per_image.getShape().get(1) != 4) { throw new RuntimeException(); } final int numberOfLevels = output.size() - 3; // This corresponds to "features" in Python export int[] num_anchors_per_level = new int[numberOfLevels]; { int[] sizes = new int[numberOfLevels]; int HW = 0; for (int i = 0; i < numberOfLevels; i++) { NDArray feature = output.get(i + 3); if (feature.getShape().dimension() != 4 || feature.getShape().get(0) != 1) { throw new RuntimeException(); } sizes[i] = (int) (feature.getShape().get(2) * feature.getShape().get(3)); HW += sizes[i]; } final int HWA = (int) logits_per_image.getShape().get(1); if (HWA % HW != 0) { throw new RuntimeException(); } final int A = (int) (HWA / HW); for (int i = 0; i < numberOfLevels; i++) { num_anchors_per_level[i] = sizes[i] * A; } } int anchorsIndex[] = new int[numberOfLevels]; int countAnchors = 0; for (int i = 0; i < numberOfLevels; i++) { anchorsIndex[i] = countAnchors; countAnchors += num_anchors_per_level[i]; } if (logits_per_image.getShape().get(1) != countAnchors || box_regression_per_image.getShape().get(1) != countAnchors || anchors_per_image.getShape().get(0) != countAnchors) { throw new RuntimeException(); } final float SCORE_THRESHOLD = 0.05f; final int TOP_K_CANDIDATES = 1000; // Convert as float array, because direct access to NDArray is terribly slow float logits_per_image_as_float[] = logits_per_image.toFloatArray(); float box_regression_per_image_as_float[] = box_regression_per_image.toFloatArray(); float anchors_per_image_as_float[] = anchors_per_image.toFloatArray(); List<Detection> detections = new LinkedList<>(); for (int level = 0; level < anchorsIndex.length; level++) { float box_regression_per_level[][] = new float[num_anchors_per_level[level]][4]; float logits_per_level[][] = new float[num_anchors_per_level[level]][2]; float anchors_per_level[][] = new float[num_anchors_per_level[level]][4]; for (int i = 0; i < num_anchors_per_level[level]; i++) { int index = anchorsIndex[level] + i; for (int j = 0; j < 4; j++) { box_regression_per_level[i][j] = box_regression_per_image_as_float[4 * index + j]; } for (int j = 0; j < 2; j++) { logits_per_level[i][j] = logits_per_image_as_float[2 * index + j]; } for (int j = 0; j < 4; j++) { anchors_per_level[i][j] = anchors_per_image_as_float[4 * index + j]; } } List<Detection> candidates = new LinkedList<>(); for (int i = 0; i < num_anchors_per_level[level]; i++) { for (int label = 0; label < numberOfClasses /* This is actually "2" */; label++) { double score = sigmoid(logits_per_level[i][label]); if (score > SCORE_THRESHOLD) { Rectangle rectangle = decodeSingle( new float[]{box_regression_per_level[i][0], box_regression_per_level[i][1], box_regression_per_level[i][2], box_regression_per_level[i][3]}, new float[]{anchors_per_level[i][0], anchors_per_level[i][1], anchors_per_level[i][2], anchors_per_level[i][3]}, imageWidth, imageHeight); // This is an entry in "topk_idxs" in Python candidates.add(new Detection(rectangle, label, score)); } } } candidates.stream().sorted().limit(TOP_K_CANDIDATES).forEach(detection -> detections.add(detection)); } /** * This is non-maximal suppression, which corresponds to * function "batched_nms()", then "_batched_nms_vanilla()" in: * https://github.com/pytorch/vision/blob/main/torchvision/ops/boxes.py * * Note that "iou_threshold" equals "self.nms_thresh" of the RetinaNet. **/ final float NMS_THRESH = 0.3f; // Note that by default, "retinanet.py" uses 0.5 List<Detection> toKeep = new LinkedList<>(); for (int label = 0; label < numberOfClasses; label++) { /** * This corresponds to "torch.ops.torchvision.nms(boxes, * scores, iou_threshold)", which is the native function * "nms_kernel_impl()" implemented in C++: * https://github.com/pytorch/vision/blob/main/torchvision/csrc/ops/cpu/nms_kernel.cpp **/ List<Detection> tmp = new ArrayList<>(); for (Detection detection : detections) { if (detection.getLabel() == label) { tmp.add(detection); } } if (tmp.size() > 0) { /** * Performs non-maximum suppression (NMS) on the boxes according * to their intersection-over-union (IoU). * NMS iteratively removes lower scoring boxes which have an * IoU greater than iou_threshold with another (higher scoring) * box. */ Collections.sort(tmp); // Sort by decreasing scores final Detection[] dets = tmp.toArray(new Detection[0]); final int ndets = dets.length; boolean[] suppressed = new boolean[ndets]; for (int i = 0; i < ndets; i++) { if (!suppressed[i]) { toKeep.add(dets[i]); final float iarea = dets[i].getRectangle().getArea(); for (int j = i + 1; j < ndets; j++) { if (!suppressed[j]) { final float xx1 = Math.max(dets[i].getRectangle().getX1(), dets[j].getRectangle().getX1()); final float yy1 = Math.max(dets[i].getRectangle().getY1(), dets[j].getRectangle().getY1()); final float xx2 = Math.min(dets[i].getRectangle().getX2(), dets[j].getRectangle().getX2()); final float yy2 = Math.min(dets[i].getRectangle().getY2(), dets[j].getRectangle().getY2()); final float w = Math.max(0, xx2 - xx1); final float h = Math.max(0, yy2 - yy1); final float inter = w * h; final float ovr = inter / (iarea + dets[j].getRectangle().getArea() - inter); if (ovr > NMS_THRESH) { suppressed[j] = true; } } } } } } } List<Detection> toSerialize = new LinkedList<>(); for (Detection detection : toKeep) { if (detection.getLabel() == 1 /* "1" is the "mass" label */ && detection.getScore() >= 0.2f /* This is the "minimum_score=0.2" in "dicom_sr.py" */) { toSerialize.add(detection); } } return toSerialize; } }